from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import CMBDataset from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.utils.text_postprocessors import multiple_select_postprocess cmb_datasets = [] for split in ["val", "test"]: cmb_reader_cfg = dict( input_columns=["exam_type", "exam_class", "question_type", "question", "option_str"], output_column="answer", train_split=split, test_split=split, ) cmb_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict( role="HUMAN", prompt=f"以下是中国{{exam_type}}中{{exam_class}}考试的一道{{question_type}},不需要做任何分析和解释,直接输出答案选项。\n{{question}}\n{{option_str}} \n 答案: ", ), dict(role="BOT", prompt="{answer}"), ], ), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=10), ) cmb_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=multiple_select_postprocess), ) cmb_datasets.append( dict( abbr="cmb" if split == "val" else "cmb_test", type=CMBDataset, path="./data/CMB/", reader_cfg=cmb_reader_cfg, infer_cfg=cmb_infer_cfg, eval_cfg=cmb_eval_cfg, ) )