from mmengine.config import read_base from opencompass.models import Doubao from opencompass.partitioners import NaivePartitioner from opencompass.runners.local_api import LocalAPIRunner from opencompass.tasks import OpenICLInferTask with read_base(): # from opencompass.configs.datasets.collections.chat_medium import datasets from opencompass.configs.summarizers.medium import summarizer from opencompass.configs.datasets.ceval.ceval_gen import ceval_datasets datasets = [ *ceval_datasets, ] models = [ dict( abbr='Doubao-pro-128k', type=Doubao, path='ep-xxxxxx', accesskey='Your_AK', secretkey='Your_SK', generation_kwargs={ 'temperature': 0.1, 'top_p': 0.9, }, query_per_second=1, max_out_len=2048, max_seq_len=2048, batch_size=8), ] infer = dict(partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalAPIRunner, max_num_workers=2, concurrent_users=2, task=dict(type=OpenICLInferTask)), ) work_dir = 'outputs/api_doubao/'