from mmengine.config import read_base with read_base(): from opencompass.configs.datasets.math.math_0shot_llm_judge_v2_gen_31d777 import \ math_datasets # 选择一个感兴趣的模型 from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_72b_instruct import \ models as qwen2_5_72b_instruct_model eval_model_name = 'eval_model_name' postprocessor_model_name = 'postprocessor_model_name' eval_model_urls = ['http://0.0.0.0:23333/v1'] postprocessor_model_urls = ['http://0.0.0.0:23333/v1'] datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], []) models = sum([v for k, v in locals().items() if k.endswith('_model')], []) for dataset in datasets: dataset['eval_cfg']['evaluator']['model_name'] = eval_model_name dataset['eval_cfg']['evaluator']['url'] = eval_model_urls dataset['eval_cfg']['evaluator']['post_url'] = postprocessor_model_urls dataset['eval_cfg']['evaluator'][ 'post_model_name'] = postprocessor_model_name # -------------Inferen Stage ---------------------------------------- from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask infer = dict( partitioner=dict(type=NumWorkerPartitioner, num_worker=8), runner=dict(type=LocalRunner, max_num_workers=8, task=dict(type=OpenICLInferTask)), ) eval = dict( partitioner=dict(type=NaivePartitioner, n=10), runner=dict(type=LocalRunner, max_num_workers=256, task=dict(type=OpenICLEvalTask)), )