from mmengine.config import read_base with read_base(): # LLM compression datasets from opencompass.configs.datasets.llm_compression.llm_compression import llm_compression_datasets # Model configs from opencompass.configs.models.qwen.hf_qwen1_5_7b import models as qwen1_5_7b from opencompass.configs.models.qwen.hf_qwen1_5_14b import models as qwen1_5_14b from opencompass.configs.models.hf_llama.hf_llama2_7b import models as llama2_7b from opencompass.configs.models.hf_llama.hf_llama2_13b import models as llama2_13b from opencompass.partitioners import NaivePartitioner from opencompass.runners import LocalRunner from opencompass.summarizers import LLMCompressionSummarizer from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask # -------------Inference Stage ---------------------------------------- datasets = [*llm_compression_datasets] workdir = 'outputs/llm_compression' models = [ *qwen1_5_7b, *qwen1_5_14b, *llama2_7b, *llama2_13b, ] # Set custom batch_size and num_gpus for faster loss calculation # Smaller batch_size should give more precise results, at the cost of worse performance model_cfg = dict(batch_size=8, run_cfg=dict(num_gpus=4, num_procs=1)) for mdl in models: mdl.update(model_cfg) infer = dict( # The OpenCompass implementation of BPC currently only supports NaivePartitioner, as the sliding window approach requires the dataset to be loaded sequentially. Using other partitioner types may produce incorrect results. partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalRunner, task=dict(type=OpenICLInferTask), max_num_workers=256, # Maximum concurrent evaluation task count ), ) # -------------Evaluation Stage ---------------------------------------- eval = dict(partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalRunner, task=dict(type=OpenICLEvalTask), max_num_workers=256, )) # -------------Summarization Stage ---------------------------------------- summarizer = dict(type=LLMCompressionSummarizer)