from mmengine.config import read_base from opencompass.models import LightllmAPI from opencompass.partitioners import NaivePartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLInferTask with read_base(): from opencompass.configs.datasets.humaneval.deprecated_humaneval_gen_a82cae import \ humaneval_datasets from opencompass.configs.summarizers.leaderboard import summarizer datasets = [*humaneval_datasets] ''' # Prompt template for InternLM2-Chat # https://github.com/InternLM/InternLM/blob/main/chat/chat_format.md _meta_template = dict( begin='<|im_start|>system\nYou are InternLM2-Chat, a harmless AI assistant<|im_end|>\n', round=[ dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'), dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True), ] ) ''' _meta_template = None models = [ dict( abbr='LightllmAPI', type=LightllmAPI, url='http://localhost:1030/generate', meta_template=_meta_template, batch_size=32, max_workers_per_task=128, rate_per_worker=1024, retry=4, generation_kwargs=dict(do_sample=False, ignore_eos=False, max_new_tokens=1024), ), ] infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalRunner, max_num_workers=32, task=dict(type=OpenICLInferTask), ), )