from mmengine.config import read_base with read_base(): from opencompass.configs.datasets.subjective.hellobench.hellobench import hellobench_datasets from opencompass.models import HuggingFacewithChatTemplate, OpenAI from opencompass.partitioners import NaivePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.runners import LocalRunner from opencompass.summarizers import DefaultSubjectiveSummarizer from opencompass.tasks import OpenICLInferTask from opencompass.tasks.subjective_eval import SubjectiveEvalTask api_meta_template = dict(round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ]) # -------------Inference Stage ---------------------------------------- # For subjective evaluation, we often set do sample for models # make sure your models' generation parameters are set properly, for example, if you set temperature=0.8, make sure you set all models' temperature to 0.8 models = [ dict( type=HuggingFacewithChatTemplate, abbr='glm-4-9b-chat-hf', path='THUDM/glm-4-9b-chat', max_out_len=16384, generation_kwargs=dict( temperature=0.8, do_sample= True, #For subjective evaluation, we suggest you do set do_sample when running model inference! ), model_kwargs=dict( device_map='auto', trust_remote_code=True, ), batch_size=1, run_cfg=dict(num_gpus=2, num_procs=1), stop_words=['<|endoftext|>', '<|user|>', '<|observation|>'], ) ] datasets = [*hellobench_datasets] # add datasets you want infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)), ) # -------------Evalation Stage ---------------------------------------- # ------------- JudgeLLM Configuration # we recommand to use gpt4o-mini as the judge model # if you want to use open-source LLMs as judge models, you can uncomment the following code # judge_models = [ # dict( # type=HuggingFacewithChatTemplate, # abbr='glm-4-9b-chat-hf', # path='THUDM/glm-4-9b-chat', # max_out_len=16384, # generation_kwargs=dict( # temperature=0.8, # do_sample=True, #For subjective evaluation, we suggest you do set do_sample when running model inference! # ), # model_kwargs=dict( # device_map='auto', # trust_remote_code=True, # ), # batch_size=1, # run_cfg=dict(num_gpus=2, num_procs=1), # stop_words=['<|endoftext|>', '<|user|>', '<|observation|>'], # ) # ] judge_models = [ dict( abbr='GPT4o', type=OpenAI, path='gpt-4o', key= 'xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=16, max_out_len=4096, batch_size=1, temperature=0.8, seed=42, ) ] ## ------------- Evaluation Configuration eval = dict( partitioner=dict( type=SubjectiveNaivePartitioner, models=models, judge_models=judge_models, ), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)), ) summarizer = dict(type=DefaultSubjectiveSummarizer) work_dir = 'outputs/hellobench/'