import os.path as osp from mmengine.config import read_base from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask ####################################################################### # PART 0 Essential Configs # ####################################################################### with read_base(): # Datasets Part ## Core Set # ## Examination # ## Reasoning from opencompass.configs.datasets.bbh.bbh_gen_98fba6 import bbh_datasets from opencompass.configs.datasets.cmmlu.cmmlu_ppl_041cbf import \ cmmlu_datasets from opencompass.configs.datasets.drop.drop_gen_a2697c import drop_datasets # ## Scientific from opencompass.configs.datasets.gpqa.gpqa_few_shot_ppl_2c9cd6 import \ gpqa_datasets from opencompass.configs.datasets.gsm8k.gsm8k_gen_17d0dc import \ gsm8k_datasets from opencompass.configs.datasets.hellaswag.hellaswag_10shot_ppl_59c85e import \ hellaswag_datasets # ## Coding from opencompass.configs.datasets.humaneval.deprecated_humaneval_gen_d2537e import \ humaneval_datasets # ## Math from opencompass.configs.datasets.math.math_4shot_base_gen_43d5b6 import \ math_datasets from opencompass.configs.datasets.MathBench.mathbench_2024_few_shot_mixed_4a3fd4 import \ mathbench_datasets from opencompass.configs.datasets.mbpp.sanitized_mbpp_gen_742f0c import \ sanitized_mbpp_datasets from opencompass.configs.datasets.mmlu.mmlu_ppl_ac766d import mmlu_datasets from opencompass.configs.datasets.mmlu_pro.mmlu_pro_few_shot_gen_bfaf90 import \ mmlu_pro_datasets # Model List from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_1_5b import \ models as lmdeploy_qwen2_5_1_5b_model from opencompass.configs.summarizers.groups.bbh import bbh_summary_groups from opencompass.configs.summarizers.groups.cmmlu import \ cmmlu_summary_groups from opencompass.configs.summarizers.groups.mathbench_v1_2024 import \ mathbench_2024_summary_groups # TODO: Add LiveCodeBench # ## Instruction Following # from opencompass.configs.datasets.IFEval.IFEval_gen_3321a3 import ifeval_datasets # Summarizer from opencompass.configs.summarizers.groups.mmlu import mmlu_summary_groups from opencompass.configs.summarizers.groups.mmlu_pro import \ mmlu_pro_summary_groups # from opencompass.configs.models.qwen.lmdeploy_qwen2_1_5b_instruct import models as lmdeploy_qwen2_1_5b_instruct_model # from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import models as hf_internlm2_5_7b_chat_model # from opencompass.configs.models.openbmb.hf_minicpm_2b_sft_bf16 import models as hf_minicpm_2b_sft_bf16_model # from opencompass.configs.models.yi.hf_yi_1_5_6b_chat import models as hf_yi_1_5_6b_chat_model # from opencompass.configs.models.gemma.hf_gemma_2b_it import models as hf_gemma_2b_it_model # from opencompass.configs.models.yi.hf_yi_1_5_34b_chat import models as hf_yi_1_5_34b_chat_model ####################################################################### # PART 1 Datasets List # ####################################################################### # datasets list for evaluation datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) ####################################################################### # PART 2 Datset Summarizer # ####################################################################### # with read_base(): core_summary_groups = [ { 'name': 'core_average', 'subsets': [['mmlu', 'accuracy'], ['mmlu_pro', 'accuracy'], ['cmmlu', 'accuracy'], ['bbh', 'naive_average'], ['hellaswag', 'accuracy'], ['drop', 'accuracy'], ['math', 'accuracy'], ['gsm8k', 'accuracy'], ['mathbench-t (average)', 'naive_average'], ['GPQA_diamond', 'accuracy'], ['openai_humaneval', 'humaneval_pass@1'], ['IFEval', 'Prompt-level-strict-accuracy'], ['sanitized_mbpp', 'score'], ['mathbench-t (average)', 'naive_average']], }, ] summarizer = dict( dataset_abbrs=[ ['mmlu', 'accuracy'], ['mmlu_pro', 'accuracy'], ['cmmlu', 'accuracy'], ['bbh', 'naive_average'], ['hellaswag', 'accuracy'], ['drop', 'accuracy'], ['math', 'accuracy'], ['gsm8k', 'accuracy'], ['mathbench-t (average)', 'naive_average'], ['GPQA_diamond', 'accuracy'], ['openai_humaneval', 'humaneval_pass@1'], ['IFEval', 'Prompt-level-strict-accuracy'], ['sanitized_mbpp', 'score'], 'mathbench-a (average)', 'mathbench-t (average)' '', ['mmlu', 'accuracy'], ['mmlu-stem', 'accuracy'], ['mmlu-social-science', 'accuracy'], ['mmlu-humanities', 'accuracy'], ['mmlu-other', 'accuracy'], '', ['mmlu_pro', 'accuracy'], ['mmlu_pro_math', 'accuracy'], ['mmlu_pro_physics', 'accuracy'], ['mmlu_pro_chemistry', 'accuracy'], ['mmlu_pro_law', 'accuracy'], ['mmlu_pro_engineering', 'accuracy'], ['mmlu_pro_other', 'accuracy'], ['mmlu_pro_economics', 'accuracy'], ['mmlu_pro_health', 'accuracy'], ['mmlu_pro_psychology', 'accuracy'], ['mmlu_pro_business', 'accuracy'], ['mmlu_pro_biology', 'accuracy'], ['mmlu_pro_philosophy', 'accuracy'], ['mmlu_pro_computer_science', 'accuracy'], ['mmlu_pro_history', 'accuracy'], '', ['cmmlu', 'accuracy'], ['cmmlu-stem', 'accuracy'], ['cmmlu-social-science', 'accuracy'], ['cmmlu-humanities', 'accuracy'], ['cmmlu-other', 'accuracy'], ['cmmlu-china-specific', 'accuracy'], ], summary_groups=sum( [v for k, v in locals().items() if k.endswith('_summary_groups')], []), ) ####################################################################### # PART 3 Models List # ####################################################################### models = sum([v for k, v in locals().items() if k.endswith('_model')], []) ####################################################################### # PART 4 Inference/Evaluation Configuaration # ####################################################################### # Local Runner infer = dict( partitioner=dict(type=NumWorkerPartitioner, num_worker=8), runner=dict( type=LocalRunner, max_num_workers=16, retry=0, # Modify if needed task=dict(type=OpenICLInferTask)), ) # eval with local runner eval = dict( partitioner=dict(type=NaivePartitioner, n=10), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLEvalTask)), ) ####################################################################### # PART 5 Utils Configuaration # ####################################################################### base_exp_dir = 'outputs/corebench_2409_objective/' work_dir = osp.join(base_exp_dir, 'base_objective')