import os.path as osp from mmengine.config import read_base from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner from opencompass.runners import LocalRunner, VOLCRunner from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask ####################################################################### # PART 0 Essential Configs # ####################################################################### with read_base(): # Datasets Part # Knowledge # Math from opencompass.configs.datasets.aime2024.aime2024_gen_6e39a4 import \ aime2024_datasets from opencompass.configs.datasets.bbh.bbh_0shot_nocot_gen_925fc4 import \ bbh_datasets # General Reasoning from opencompass.configs.datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import \ gpqa_datasets from opencompass.configs.datasets.humaneval.humaneval_openai_sample_evals_gen_dcae0e import \ humaneval_datasets # Instruction Following from opencompass.configs.datasets.IFEval.IFEval_gen_353ae7 import \ ifeval_datasets from opencompass.configs.datasets.livecodebench.livecodebench_gen_a4f90b import \ LCBCodeGeneration_dataset from opencompass.configs.datasets.math.math_prm800k_500_0shot_cot_gen import \ math_datasets from opencompass.configs.datasets.mmlu_pro.mmlu_pro_0shot_cot_gen_08c1de import \ mmlu_pro_datasets # Model List from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import \ models as hf_internlm2_5_7b_chat_model # Summary Groups from opencompass.configs.summarizers.groups.bbh import bbh_summary_groups from opencompass.configs.summarizers.groups.mmlu_pro import \ mmlu_pro_summary_groups ####################################################################### # PART 1 Datasets List # ####################################################################### # datasets list for evaluation # Only take LCB generation for evaluation datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) + [LCBCodeGeneration_dataset] ####################################################################### # PART 2 Datset Summarizer # ####################################################################### core_summary_groups = [ { 'name': 'core_average', 'subsets': [ ['IFEval', 'Prompt-level-strict-accuracy'], ['bbh', 'naive_average'], ['math_prm800k_500', 'accuracy'], ['aime2024', 'accuracy'], ['GPQA_diamond', 'accuracy'], ['mmlu_pro', 'naive_average'], ['openai_humaneval', 'humaneval_pass@1'], ['lcb_code_generation', 'pass@1'], ], }, ] summarizer = dict( dataset_abbrs=[ ['core_average', 'naive_average'], '', 'Instruction Following', ['IFEval', 'Prompt-level-strict-accuracy'], '', 'General Reasoning', ['bbh', 'naive_average'], ['GPQA_diamond', 'accuracy'], '', 'Math Calculation', ['math_prm800k_500', 'accuracy'], ['aime2024', 'accuracy'], '', 'Knowledge', ['mmlu_pro', 'naive_average'], '', 'Code', ['openai_humaneval', 'humaneval_pass@1'], ['lcb_code_generation', 'pass@1'], ], summary_groups=sum( [v for k, v in locals().items() if k.endswith('_summary_groups')], []), ) ####################################################################### # PART 3 Models List # ####################################################################### models = sum([v for k, v in locals().items() if k.endswith('_model')], []) ####################################################################### # PART 4 Inference/Evaluation Configuaration # ####################################################################### # Local Runner infer = dict( partitioner=dict(type=NumWorkerPartitioner, num_worker=8), runner=dict( type=LocalRunner, max_num_workers=16, retry=0, # Modify if needed task=dict(type=OpenICLInferTask), ), ) # eval with local runner eval = dict( partitioner=dict(type=NaivePartitioner, n=10), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLEvalTask)), ) ####################################################################### # PART 5 Utils Configuaration # ####################################################################### work_dir = './outputs/oc_academic_202412'