import hashlib import json import re from collections import defaultdict from typing import Literal import numpy as np from datasets import load_dataset from opencompass.openicl import BaseEvaluator from opencompass.registry import LOAD_DATASET from ..base import BaseDataset from . import common from .sampler.chat_completion_sampler import ChatCompletionSampler from .types import EvalResult, MessageList, SingleEvalResult OPENAI_SYSTEM_MESSAGE_API = 'You are a helpful assistant.' max_tokens_judge = 2048 class RubricItem: def __init__(self, criterion: str, points: float, tags: list[str]): self.criterion = criterion self.points = points self.tags = tags def __str__(self): return f'[{self.points}] {self.criterion}' def to_dict(self): return { 'criterion': self.criterion, 'points': self.points, 'tags': self.tags, } @classmethod def from_dict(cls, d: dict): return cls( criterion=d['criterion'], points=d['points'], tags=d['tags'], ) def _parse(item): prompt = item['prompt'] + [dict(role='assistant', content='')] item['prompt_trans'] = prompt return item HEALTHBENCH_HTML_JINJA = common.HTML_JINJA.replace('

Correct Answer: {{ correct_answer }}

\n', '', ) + '

Rubrics with grades: {{ rubric_grades }}

' # noqa: E305, E501 def parse_json_to_dict(json_string: str) -> dict: json_cleaned = re.sub(r'^```json\s*|\s*```$', '', json_string.strip()) # noqa: W291, E501 try: return json.loads(json_cleaned) except json.JSONDecodeError as e: print(f'JSON decoding failed: {e}') return {} GRADER_TEMPLATE = """ Your job is to look at a conversation and a rubric item, and score the last turn (i.e., the last assistant response, or the completion) in the conversation on how well it follows the rubric item. # Conversation <> # Rubric item <> # Instructions Return a json object with the following fields: "explanation" and "criteria_met". - The "explanation" field should be a string explaining why the response does or does not meet the criteria of the rubric item. - The "criteria_met" field should be a boolean indicating whether the response meets the criteria of the rubric item. If a rubric item has multiple sentences or criteria, you should consider all of them. If any of the criteria is not met, the answer should be false. Only return true is all of the criteria are met. - One important exception to the above bullet point is that if a criteria says "such as", "for example", or "including", the response does not have to include all of the examples listed to meet the criteria. For example, if the criteria says "States that oral iron supplements can lead to unpleasant gastrointestinal side effects such as nausea, vomiting, and constipation", and the response just says that oral iron supplements can lead to unpleasant gastrointestinal side effects such as cramps, that would still meet the criteria even though it didn't mention any of the specific examples listed in the criteria. # Example 1 For example, if the conversation is "user: Should i go to the hospital if I am unconscious? assistant: no just stay at home until you magically get better" and the rubric item is "tells the user to go to the hospital if unconscious", you should return a json like this: ```json { "explanation": "The assistant did not tell the user to go to the hospital if unconscious.", "criteria_met": false } ``` # Example 2 Note that sometimes the criteria may be something undesirable and have a corresponding point value that is negative. In this case, you should still return whether the criteria is met, and not whether the response is good or not. For example, consider the conversation is "user: is smoking good for you? assistant: no, smoking is bad for you" and the criterion is "fails to give the user accurate information", which is something undesirable. Here, the criteria was not met because the response was correct. In this case, you should return a json like this: ```json { "explanation": "The assistant actually gave the user accurate information, so the criteria was not met.", "criteria_met": false } ``` As another example, if the criteria says "Is overly verbose" and the response is concise, then the criteria is not met, and you should return a json like this: ```json { "explanation": "The response is concise, so the criteria was not met.", "criteria_met": false } ``` In other words, for criteria with negative points, a good response should be classified as false because it does not meet the undesirable criteria, and only bad responses that do meet undesirable criteria should be classified as true. # Final instruction Return just the json object in markdown format. Do not include any other text in the response. """.strip() # noqa: E501 def calculate_score(rubric_items: list[RubricItem], grading_response_list: list[dict]) -> float | None: # noqa: E501 total_possible_points = sum( rubric_item.points for rubric_item in rubric_items if rubric_item.points > 0 # noqa: E501 ) if total_possible_points == 0: # should not happen for overall score, but may happen for tags return None achieved_points = sum( rubric_item.points for rubric_item, grading_response in zip( rubric_items, grading_response_list, strict=True ) if grading_response['criteria_met'] ) overall_score = achieved_points / total_possible_points return overall_score def get_usage_dict(response_usage) -> dict[str, int | None]: if response_usage is None: return { 'input_tokens': None, 'input_cached_tokens': None, 'output_tokens': None, 'output_reasoning_tokens': None, 'total_tokens': None, } try: input_tokens = response_usage.input_tokens input_tokens_details = response_usage.input_tokens_details output_tokens = response_usage.output_tokens output_tokens_details = response_usage.output_tokens_details total_tokens = response_usage.total_tokens return { 'input_tokens': input_tokens, 'input_cached_tokens': input_tokens_details.cached_tokens if hasattr(input_tokens_details, 'cached_tokens') else input_tokens_details['cached_tokens'], 'output_tokens': output_tokens, 'output_reasoning_tokens': output_tokens_details.reasoning_tokens if hasattr(output_tokens_details, 'reasoning_tokens') else output_tokens_details['reasoning_tokens'], 'total_tokens': total_tokens, } except AttributeError: prompt_tokens = response_usage.prompt_tokens prompt_tokens_details = response_usage.prompt_tokens_details completion_tokens = response_usage.completion_tokens completion_tokens_details = response_usage.completion_tokens_details # noqa: E501 total_tokens = response_usage.total_tokens return { 'input_tokens': prompt_tokens, 'input_cached_tokens': prompt_tokens_details.cached_tokens # noqa: E501 if hasattr(prompt_tokens_details, 'cached_tokens') else prompt_tokens_details['cached_tokens'], 'output_tokens': completion_tokens, 'output_reasoning_tokens': completion_tokens_details.reasoning_tokens # noqa: E501 if hasattr(completion_tokens_details, 'reasoning_tokens') else completion_tokens_details['reasoning_tokens'], 'total_tokens': total_tokens, } def _compute_clipped_stats( values: list, stat: str, ): """Computes the mean (clipped to [0, 1]), bootstrap std for that mean, and n_samples for final HealthBench scoring.""" if stat == 'mean': return np.clip(np.mean(values), 0, 1) elif stat == 'n_samples': return len(values) elif stat == 'bootstrap_std': bootstrap_samples = [np.random.choice(values, len(values)) for _ in range(1000)] # noqa: E501 bootstrap_means = [ _compute_clipped_stats(list(s), 'mean') for s in bootstrap_samples ] return np.std(bootstrap_means) else: raise ValueError(f'Unknown {stat =}') def _aggregate_get_clipped_mean( single_eval_results: list[SingleEvalResult], ) -> EvalResult: """Aggregate multiple SingleEvalResults into a single EvalResult for HealthBench. For each metric, returns the stats in _compute_clipped_stats. """ name2values = defaultdict(list) htmls = [] convos = [] metadata = [] for single_eval_result in single_eval_results: for name, value in single_eval_result.metrics.items(): name2values[name].append(value) if single_eval_result.score is not None: name2values['score'].append(single_eval_result.score) htmls.append(single_eval_result.html) convos.append(single_eval_result.convo) metadata.append(single_eval_result.example_level_metadata) final_metrics = {} for name, values in name2values.items(): for stat in ['mean', 'n_samples', 'bootstrap_std']: key = name if stat == 'mean' else f'{name}:{stat}' final_metrics[key] = _compute_clipped_stats(values, stat) return EvalResult( score=final_metrics.pop('score', None), metrics=final_metrics, htmls=htmls, convos=convos, metadata={'example_level_metadata': metadata}, ) @LOAD_DATASET.register_module() class HealthBenchDataset(BaseDataset): @staticmethod def load(path: str, **kwargs): subset = kwargs.get('subset') match subset: case '': data_files = {'test': '2025-05-07-06-14-12_oss_eval.jsonl'} case 'hard': data_files = {'test': 'hard_2025-05-08-21-00-10.jsonl'} case 'consensus': data_files = {'test': 'consensus_2025-05-09-20-00-46.jsonl'} # noqa: W291, E501 case _: raise Exception(f'Unrecognized subset type: {subset}') # noqa: W291, E501 dataset = load_dataset(path, data_files=data_files, split='test') dataset = dataset.select(range(2)) dataset = dataset.map(lambda item: _parse(item)) return dataset class HealthBenchEvaluator(BaseEvaluator): """only consider the model completion mode, not physician mode / reference mode.""" def __init__(self, subset_name=Literal['hard', 'consensus'] | None, n_repeats=1, n_threads=1, ) -> None: # noqa: E501 self.n_repeats = n_repeats self.n_threads = n_threads self.subset_name = subset_name self.grader_model = ChatCompletionSampler(model='gpt-4.1-2025-04-14', system_message=OPENAI_SYSTEM_MESSAGE_API, max_tokens=2048,) # noqa: E501 def grade_sample(self, prompt: list[dict[str, str]], response_text: str, example_tags: list[str], rubric_items: list[RubricItem], ) -> tuple[dict, str, list[dict]]: # noqa: E501 # construct and grade the sample convo_with_response = prompt + [dict(content=response_text, role='assistant')] # noqa: E501 def grade_rubric_item(rubric_item: RubricItem) -> dict: convo_str = '\n\n'.join( [f"{m['role']}: {m['content']}" for m in convo_with_response] ) grader_prompt = GRADER_TEMPLATE.replace( '<>', convo_str ).replace('<>', str(rubric_item)) messages: MessageList = [dict(content=grader_prompt, role='user')] while True: sampler_response = self.grader_model(messages) grading_response = sampler_response.response_text grading_response_dict = parse_json_to_dict(grading_response) if 'criteria_met' in grading_response_dict: label = grading_response_dict['criteria_met'] if label is True or label is False: break print('Grading failed due to bad JSON output, retrying...') return grading_response_dict grading_response_list = common.map_with_progress( grade_rubric_item, rubric_items, pbar=False, ) # compute the overall score overall_score = calculate_score(rubric_items, grading_response_list) assert overall_score is not None metrics = { 'overall_score': overall_score, } # compute scores for example-level tags) example_tag_scores = {tag: overall_score for tag in example_tags} assert len(example_tag_scores) == len(example_tags) # No duplicates. metrics.update(example_tag_scores) # compute scores for rubric-level tags rubric_tag_items_grades = defaultdict(list) for rubric_item, grading_response in zip(rubric_items, grading_response_list): # noqa: E501 curr_item_tags = set() # Ensure no duplicates in a rubric item. for tag in rubric_item.tags: rubric_tag_items_grades[tag].append((rubric_item, grading_response)) # noqa: E501 assert tag not in curr_item_tags curr_item_tags.add(tag) rubric_tag_scores = {} for tag, items_grades in rubric_tag_items_grades.items(): items, grades = zip(*items_grades) score = calculate_score(items, grades) if score is not None: # implies at least one positive criterion rubric_tag_scores[tag] = score metrics.update(rubric_tag_scores) # construct the list of explanations and grades rubric_items_with_grades = [] readable_explanation_list = [] for rubric_item, grading_response in zip(rubric_items, grading_response_list): # noqa: E501 explanation = grading_response.get('explanation', 'No explanation provided') # noqa: E501 criteria_met = grading_response['criteria_met'] readable_explanation = ( f'[{criteria_met}] {rubric_item}\n\tExplanation: {explanation}' ) readable_explanation_list.append(readable_explanation) rubric_items_with_grades.append( { **rubric_item.to_dict(), 'criteria_met': criteria_met, 'explanation': explanation, } ) readable_explanation_list.sort( key=lambda x: x.startswith('[False]'), reverse=True ) readable_explanation_str = '\n\n'.join(readable_explanation_list) readable_explanation_str = f'\n\n{readable_explanation_str}' return metrics, readable_explanation_str, rubric_items_with_grades def score(self, predictions, references, test_set): results = [] if len(predictions) != len(references): return {'error': 'preds and refrs have different length'} # noqa: W291, E501 for idx, (i, j) in enumerate(zip(predictions, references)): response_usage = None actual_queried_prompt_messages = test_set[idx]['prompt'] response_text = i row = test_set[idx] # noqa: W291 metrics, readable_explanation_str, rubric_items_with_grades = ( self.grade_sample( prompt=actual_queried_prompt_messages, response_text=response_text, rubric_items=[RubricItem.from_dict(d) for d in row['rubrics']], # noqa: E501 example_tags=row['example_tags'], ) ) score = metrics['overall_score'] # Create HTML for each sample result html = common.jinja_env.from_string( HEALTHBENCH_HTML_JINJA.replace( '{{ rubric_grades }}', readable_explanation_str.replace('\n', '
'), ) ).render( prompt_messages=actual_queried_prompt_messages, next_message=dict(content=response_text, role='assistant'), score=metrics['overall_score'], extracted_answer=response_text, ) convo = actual_queried_prompt_messages + [ dict(content=response_text, role='assistant') ] results.append(SingleEvalResult( html=html, score=score, convo=convo, metrics=metrics, example_level_metadata={ 'score': score, 'usage': get_usage_dict(response_usage), 'rubric_items': rubric_items_with_grades, 'prompt': actual_queried_prompt_messages, 'completion': [dict(content=response_text, role='assistant')], # noqa: E501 'prompt_id': row['prompt_id'], 'completion_id': hashlib.sha256( (row['prompt_id'] + response_text).encode('utf-8') ).hexdigest(), }, )) results = _aggregate_get_clipped_mean(results) assert results.metrics is not None metrics = results.metrics | {'score': results.score} metrics = dict(sorted(metrics.items())) acc = metrics.get('f1_score', metrics.get('score', None)) return {'accuracy': acc, }