# flake8: noqa: E501 import csv import os import os.path as osp import re import statistics from collections import defaultdict from datetime import datetime import numpy as np from mmengine import ConfigDict try: from prettytable import from_csv except ImportError: from_csv = None from opencompass.utils import model_abbr_from_cfg from .subjective_post_process import post_process_autoj, post_process_judgelm from .utils import get_judgeanswer_and_reference_update, get_outdir def post_process_followbench(item): generation, level = item['prediction'], item['gold']['level'] try: satisfy = generation.strip('```').strip().split('\n')[-1] if level == 1: if 'YES' in satisfy: return 1, 1 elif 'NO' in satisfy: return 0, 0 else: raise Exception('Invalid evaluation for level 1.') else: satisfy_list = re.search(r'\[.*\]', satisfy) if satisfy_list: satisfy_list = eval(satisfy_list.group()) if len(satisfy_list) == level: num_true = 0 for i in satisfy_list: if i == 'YES' or i == 'True': num_true += 1 elif i in [ 'NO', 'False', 'PARTIAL', 'MAYBE', 'UNKNOWN', 'N/A' ]: num_true += 0 else: raise Exception('Invalid element in the list.') return int(num_true == level), num_true / level else: raise Exception('Invalid number of elements in the list.') else: raise Exception('Invalid list that cannot be parsed.') except Exception as e: return -1, -1 def get_scores(judged_answers, references): results = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] n_group = len(judged_answers) // 5 n_groups = [n_group] * 5 for judged_answer, reference in zip(judged_answers, references): if judged_answer[0] == -1: n_groups[reference['level'] - 1] -= 1 else: results[0][reference['level'] - 1] += judged_answer[0] results[1][reference['level'] - 1] += judged_answer[1] for i in range(len(results)): for j in range(len(results[i])): if n_groups[j] != 0: results[i][j] = results[i][j] / n_groups[j] else: results[i][j] = 0 temp_dict = { 'HSR_AVG': statistics.mean(results[0]), 'SSR_AVG': statistics.mean(results[1]) } for idx, s in enumerate(results[0]): temp_dict[f'HSR_L{idx+1}'] = s for idx, s in enumerate(results[1]): temp_dict[f'SSR_L{idx+1}'] = s return temp_dict class FollowBenchSummarizer: """Do the subjectivity analyze based on evaluation results. Args: config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime. """ def __init__(self, config: ConfigDict) -> None: self.tasks = [] self.cfg = config self.eval_model_cfgs = self.cfg['eval']['partitioner']['models'] self.eval_model_abbrs = [ model_abbr_from_cfg(model) for model in self.eval_model_cfgs ] self.judge_models = self.cfg.get('judge_models', None) self.judge_function = post_process_followbench def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): """Summarize the subjectivity analysis based on evaluation results. Args: time_str (str): Timestamp for file naming. Returns: pd.DataFrame: The summary results. """ all_scores = {} for judge_model in self.judge_models: score_by_judgemodel = {} judge_abbr = model_abbr_from_cfg(judge_model) dataset_cfgs = self.cfg['datasets'] dataset = dataset_cfgs[0] # Alignbench just have only one subfile output_dir, results_folder = get_outdir(self.cfg, time_str) fout = osp.join(output_dir, 'followbench-judged-by--' + judge_abbr + '.csv') for eval_model_abbr in self.eval_model_abbrs: subdir = eval_model_abbr + '_judged-by--' + judge_abbr subdir_path = os.path.join(results_folder, subdir) model = eval_model_abbr if os.path.isdir(subdir_path): judged_answers, references = get_judgeanswer_and_reference_update( dataset, subdir_path, self.judge_function) if len(judged_answers) == 0: score_by_judgemodel[model] = None continue scores = get_scores(judged_answers, references) score_by_judgemodel[model] = scores else: score_by_judgemodel[model] = None print(subdir_path + ' is not exist! please check!') all_scores[judge_abbr] = score_by_judgemodel return {'followbench': all_scores}