import json import os.path as osp import re import tempfile from typing import List from datasets import Dataset from opencompass.openicl.icl_evaluator import BaseEvaluator from opencompass.registry import LOAD_DATASET from .base import BaseDataset @LOAD_DATASET.register_module() class HumanevalDataset(BaseDataset): @staticmethod def load(path: str, num_repeats: int = 1): """Load humaneval dataset for pass k mode. Note that you can use num_repeats > 1 when your model does not support `num_return_sequence` in generation, otherwise use the raw humaneval dataset and set `num_return_sequence` in model config to generate multiple responses for testing pass@k>1. It better to change your dataset abbr correspondingly if you want to change num_repeats>1, otherwise the number in `.cache/dataset_size.json` might be inconsistent. Args: num_repeats(int): Number of repetition for this dataset to get multiple responses in special cases. """ dataset = [] with open(path, 'r', encoding='utf-8') as f: for line in f: dataset.extend( [json.loads(line.strip()) for _ in range(num_repeats)]) return Dataset.from_list(dataset) class HumanEvaluator(BaseEvaluator): """Evaluator for HumanEval or EvalPlus.""" def __init__(self, k: List[int] = [1, 10, 100], metric: str = 'HumanEval') -> None: self.metric = metric assert self.metric in ['HumanEval', 'EvalPlus'] if self.metric == 'HumanEval': try: from human_eval.data import HUMAN_EVAL, write_jsonl from human_eval.evaluation import \ evaluate_functional_correctness self.write_jsonl = write_jsonl self.HUMAN_EVAL = HUMAN_EVAL self.eval = evaluate_functional_correctness except ImportError: raise ImportError( 'Please install human_eval use following steps:\n' 'git clone git@github.com:open-compass/human-eval.git\n' 'cd human-eval && pip install -e .') else: try: from evalplus.data import write_jsonl from evalplus.evaluate import evaluate self.write_jsonl = write_jsonl self.eval = evaluate except ImportError: raise ImportError( 'Please install evalplus use following steps:\n' 'git clone --recurse-submodules git@github.com:open-compass/human-eval.git\n' # noqa 'cd human-eval\n' 'pip install -e .\n' 'pip install -e evalplus\n') self.k = k super().__init__() def score(self, predictions, references, test_set): prompts = [item['prompt'] for item in test_set] humaneval_preds = [] if self.metric == 'HumanEval': # create json file in human_eval format for preds, refer in zip(predictions, references): # suits for two case # 1. use repeated dataset # 2. use `num_return_sequences` to generate multiple responses if not isinstance(preds, list): preds = [preds] for pred in preds: humaneval_preds.append({ 'task_id': refer, 'completion': pred }) with tempfile.TemporaryDirectory() as tmp_dir: out_dir = osp.join(tmp_dir, 'human_eval.json') self.write_jsonl(out_dir, humaneval_preds) score = self.eval(out_dir, self.k, n_workers=4, timeout=3.0, problem_file=self.HUMAN_EVAL) return {f'humaneval_{k}': score[k] * 100 for k in score} else: for preds, refer, prompt in zip(predictions, references, prompts): if not isinstance(preds, list): preds = [preds] for pred in preds: humaneval_preds.append({ 'task_id': refer, 'solution': prompt + pred }) with tempfile.TemporaryDirectory() as tmp_dir: out_dir = osp.join(tmp_dir, 'human_eval.jsonl') self.write_jsonl(out_dir, humaneval_preds) flags = dict(dataset='humaneval', samples=out_dir, base_only=None, parallel=None, i_just_wanna_run=None, test_details=0.2, min_time_limit=0.2, gt_time_limit_factor=4.0, mini=None) score = self.eval(flags) return {f'humaneval_plus_{k}': score[k] * 100 for k in score} def humaneval_postprocess(text: str) -> str: if '```' in text: blocks = re.findall(r'```(.*?)```', text, re.DOTALL) if len(blocks) == 0: text = text.split('```')[1] # fall back to default strategy else: text = blocks[0] # fetch the first code block if not text.startswith('\n'): # in case starting with ```python text = text[max(text.find('\n') + 1, 0):] if text.strip().startswith('from') or text.strip().startswith('import'): def_idx = text.find('def') if def_idx != -1: text = text[max(text.find('\n', def_idx) + 1, 0):] text = text.split('\n\n')[0] text = text.lstrip('\n') if text.strip().startswith('def'): text = '\n'.join(text.split('\n')[1:]) if not text.startswith(' '): if text.startswith(' '): text = ' ' + text.lstrip() else: text = '\n'.join([' ' + line for line in text.split('\n')]) return text def humaneval_postprocess_v2(text: str) -> str: """This is an advanced version of previous postprocess to handle more situations, better to use this one.""" try: # for chatGLM raw text text = eval(text) except Exception: pass text = text.lstrip('\n') if '```' in text: blocks = re.findall(r'```(.*?)```', text, re.DOTALL) if len(blocks) == 0: text = text.split('```')[1] # fall back to default strategy else: text = blocks[0] # fetch the first code block if not text.startswith('\n'): # in case starting with ```python text = text[max(text.find('\n') + 1, 0):] if text.strip().startswith('from') or text.strip().startswith('import'): def_idx = text.find('def') if def_idx != -1: text = text[max(text.find('\n', def_idx) + 1, 0):] # remove empty lines text = '\n'.join([line for line in text.split('\n') if line != '']) text = text.lstrip('\n') if text.strip().startswith('def'): text = '\n'.join(text.split('\n')[1:]) # deal with the indentation error if text.startswith(' '): text = ' ' + text.lstrip() else: text = '\n'.join([' ' + line for line in text.split('\n')]) text = text.split('\n') # If number of leading space reduces, we assume that the code block ends. min_leading_space = None end_index = None for index, line in enumerate(text): if line.strip() == '' or line.strip()[0] in ["'", '"', '#']: continue current_leading_space = len(line.rstrip()) - len(line.strip()) if min_leading_space is None: min_leading_space = current_leading_space elif current_leading_space < min_leading_space: end_index = index break if end_index is not None: text = '\n'.join(text[:end_index]) else: text = '\n'.join(text) return text def humaneval_gpt_postprocess(text: str) -> str: """Better answer postprocessor for better instruction-aligned models like GPT.""" if '```' in text: blocks = re.findall(r'```(.*?)```', text, re.DOTALL) if len(blocks) == 0: text = text.split('```')[1] # fall back to default strategy else: text = blocks[0] # fetch the first code block if not text.startswith('\n'): # in case starting with ```python text = text[max(text.find('\n') + 1, 0):] if text.strip().startswith('from') or text.strip().startswith('import'): def_idx = text.find('def') if def_idx != -1: text = text[max(text.find('\n', def_idx) + 1, 0):] text = text.split('\n\n\n')[0] if text.strip().startswith('def'): text = '\n'.join(text.split('\n')[1:]) if not text.startswith(' '): if text.startswith(' '): text = ' ' + text.lstrip() else: text = '\n'.join([' ' + line for line in text.split('\n')]) return text