from mmengine.config import read_base with read_base(): from .ruler_cwe_gen import cwe_datasets as cwe # CWE from .ruler_fwe_gen import fwe_datasets as fwe # FWE from .ruler_niah_gen import niah_datasets as niah # Niah from .ruler_qa_gen import qa_datasets as qa # QA from .ruler_vt_gen import vt_datasets as vt # VT import_ds = sum((cwe, fwe, niah, qa, vt), []) # Evaluation config NUM_SAMPLES = 100 # Change to the number of samples you need # Change the context lengths to be tested max_seq_lens = [1024 * 128] abbr_suffixs = ['128k'] ruler_datasets = [] # Different seq length for max_seq_len, abbr_suffix in zip(max_seq_lens, abbr_suffixs): for dataset in import_ds: tmp_dataset = dataset.deepcopy() tmp_dataset['abbr'] = tmp_dataset['abbr'] + '_' + abbr_suffix tmp_dataset['num_samples'] = NUM_SAMPLES tmp_dataset['max_seq_length'] = max_seq_len ruler_datasets.append(tmp_dataset)