from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import GPQADataset, GPQAEvaluator from opencompass.utils import first_option_postprocess gpqa_reader_cfg = dict( input_columns=['question', 'A', 'B', 'C', 'D'], output_column='answer') gpqa_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='What is the correct answer to this question: {question}\nChoices:\n' '(A){A}\n' '(B){B}\n' '(C){C}\n' '(D){D}\n' 'Format your response as follows: "The correct answer is (insert answer here)"'), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer)) gpqa_eval_cfg = dict(evaluator=dict(type=GPQAEvaluator), pred_postprocessor=dict(type=first_option_postprocess, options='ABCD')) gpqa_datasets = [] gpqa_subsets = { # 'extended': 'gpqa_extended.csv', # 'main': 'gpqa_main.csv', 'diamond': 'gpqa_diamond.csv' } for split in list(gpqa_subsets.keys()): gpqa_datasets.append( dict( abbr='GPQA_' + split, type=GPQADataset, path='./data/gpqa/', name=gpqa_subsets[split], reader_cfg=gpqa_reader_cfg, infer_cfg=gpqa_infer_cfg, eval_cfg=gpqa_eval_cfg) )