from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import ChemBenchDataset from opencompass.utils.text_postprocessors import first_capital_postprocess chembench_reader_cfg = dict( input_columns=['input', 'A', 'B', 'C', 'D'], output_column='target', train_split='dev') chembench_all_sets = [ 'Name_Conversion', 'Property_Prediction', 'Mol2caption', 'Caption2mol', 'Product_Prediction', 'Retrosynthesis', 'Yield_Prediction', 'Temperature_Prediction', 'Solvent_Prediction' ] chembench_datasets = [] for _name in chembench_all_sets: # _hint = f'There is a single choice question about {_name.replace("_", " ")}. Answer the question by replying A, B, C or D.' _hint = f'There is a single choice question about chemistry. Answer the question by replying A, B, C or D.' chembench_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt= f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: ' ), dict(role='BOT', prompt='{target}\n') ]), ), prompt_template=dict( type=PromptTemplate, template=dict( begin='', round=[ dict( role='HUMAN', prompt= f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: ' ), ], ), ice_token='', ), retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]), inferencer=dict(type=GenInferencer), ) chembench_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=first_capital_postprocess)) chembench_datasets.append( dict( abbr=f'ChemBench_{_name}', type=ChemBenchDataset, path='opencompass/ChemBench4K', name=_name, reader_cfg=chembench_reader_cfg, infer_cfg=chembench_infer_cfg, eval_cfg=chembench_eval_cfg, )) del _name, _hint