from mmengine.config import read_base from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets.OpenHuEval.HuProverbRea import HuProverbDatasetOE, HuProverb_Evaluator_OE with read_base(): from .HuProverbRea_setting import INSTRUCTIONS_OE_DIR_QA, DATA_PATH, DATA_VERSION, judge_prompt_template # currently we use English prompts with hu proverbs inserted prompt_template_language = 'en' HuProverbRea_reader_cfg = dict( input_columns=[ 'hu_text', 'context', 'en_expl', 'hu_expl', 'option1', 'option2' ], output_column='out', ) HuProverbRea_datasets = [] instruction = INSTRUCTIONS_OE_DIR_QA[prompt_template_language] HuProverbRea_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin='', round=[ dict(role='HUMAN', prompt=instruction), ], ), ice_token='', ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) HuProverbRea_eval_cfg = dict(evaluator=dict( type=HuProverb_Evaluator_OE, judge_prompt_template=judge_prompt_template, )) HuProverbRea_datasets.append( dict( abbr= f'OpenHuEval_HuProverbRea_{DATA_VERSION}_OE-prompt_{prompt_template_language}', type=HuProverbDatasetOE, filepath=DATA_PATH, reader_cfg=HuProverbRea_reader_cfg, infer_cfg=HuProverbRea_infer_cfg, eval_cfg=HuProverbRea_eval_cfg, ))