from opencompass.datasets import WildBenchDataset from opencompass.openicl.icl_evaluator import LMEvaluator from opencompass.openicl.icl_inferencer import ChatInferencer from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever hu_life_qa_reader_cfg = dict( input_columns=['dialogue', 'prompt'], output_column='judge', ) data_path ='/mnt/hwfile/opendatalab/yanghaote/share/HuLifeQA_20250131.jsonl' hu_life_qa_datasets = [] hu_life_qa_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template="""{dialogue}""" ), retriever=dict(type=ZeroRetriever), inferencer=dict( type=ChatInferencer, max_seq_len=4096, max_out_len=2048, infer_mode='last', ), ) hu_life_qa_eval_cfg = dict( evaluator=dict( type=LMEvaluator, prompt_template=dict( type=PromptTemplate, template="""{prompt}""" ), ), pred_role='BOT', ) hu_life_qa_datasets.append( dict( abbr='open_hu_eval_hu_life_qa', type=WildBenchDataset, path=data_path, reader_cfg=hu_life_qa_reader_cfg, infer_cfg=hu_life_qa_infer_cfg, eval_cfg=hu_life_qa_eval_cfg, ) ) task_group_new = { 'life_culture_custom': 'life_culture_custom', 'childbearing and education': 'life_culture_custom', 'culture and community': 'life_culture_custom', 'culture and customs': 'life_culture_custom', 'food and drink': 'life_culture_custom', 'health': 'life_culture_custom', 'holidays': 'life_culture_custom', 'home': 'life_culture_custom', 'person': 'life_culture_custom', 'transport': 'life_culture_custom', 'science': 'life_culture_custom', 'travel': 'life_culture_custom', 'business_finance': 'business_finance', 'business and finance': 'business_finance', 'education_profession': 'education_profession', 'public education and courses': 'education_profession', 'politics_policy_law': 'politics_policy_law', 'politics': 'politics_policy_law', }