from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import JiebaRougeEvaluator from opencompass.datasets.rolebench import InstructionGeneralizationChineseDataset instruction_generalization_zh_reader_cfg = dict( input_columns=['role', 'desc', 'question'], output_column='answer', train_split='train', test_split='test' ) instruction_generalization_zh_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='你是{role},你的特征描述是:{desc}。现在请你回答我的一些问题,以准确展现你的人格特征!你的说话风格要全面模仿被赋予的人格角色!请不要暴露你是人工智能模型或者语言模型,你要时刻记住你只被赋予的一个人格角色。说话不要嗦,也不要太过于正式或礼貌。'), ], round=[ dict(role='HUMAN', prompt='{question}'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512) ) instruction_generalization_zh_eval_cfg = dict( evaluator=dict(type=JiebaRougeEvaluator), pred_role='BOT' ) instruction_generalization_zh_datasets = [ dict( abbr='RoleBench_instruct_zh', type=InstructionGeneralizationChineseDataset, path='ZenMoore/RoleBench', reader_cfg=instruction_generalization_zh_reader_cfg, infer_cfg=instruction_generalization_zh_infer_cfg, eval_cfg=instruction_generalization_zh_eval_cfg) ]