from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets.PMMEval import PMMEvalMIFEvalDataset, PMMEvalMIFEvalEvaluator, pmmeval_mifeval_postprocess NATURAL_LANGUAGE_CODES = ['en', 'zh', 'ar', 'es', 'fr', 'ja', 'ko', 'pt', 'th', 'vi'] PMMEVAL_MIFEVAL_TEMPLATE = '{prompt}' PMMEval_MIFEval_datasets = list() PMMEval_MIFEval_reader_cfg = dict( input_columns=['prompt', 'instruction_id_list', 'kwargs'], output_column=None, test_split='test' ) PMMEval_MIFEval_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict( role='HUMAN', prompt=PMMEVAL_MIFEVAL_TEMPLATE ) ] ) ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) for lang_code in NATURAL_LANGUAGE_CODES: PMMEval_MIFEval_eval_cfg = dict( evaluator=dict(type=PMMEvalMIFEvalEvaluator), pred_role='BOT', pred_postprocessor=dict(type=pmmeval_mifeval_postprocess, lang_code=lang_code) ) PMMEval_MIFEval_datasets.append( dict( abbr=f'mifeval-{lang_code}', type=PMMEvalMIFEvalDataset, path='P-MMEval', lang=lang_code, reader_cfg=PMMEval_MIFEval_reader_cfg, infer_cfg=PMMEval_MIFEval_infer_cfg, eval_cfg=PMMEval_MIFEval_eval_cfg) )