import json import os import os.path as osp import re import subprocess from collections import defaultdict from typing import List, Optional import numpy as np from datasets import Dataset from opencompass.openicl.icl_evaluator import BaseEvaluator from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET from .base import BaseDataset def load_experiment(file: str) -> dict: """Load single experiment file with solutions.""" with open(file, 'r') as f: notebook = json.load(f) example = notebook['cells'] metadata = notebook['metadata'] modules = metadata.get('modules', []) if modules: # these two annotations should be the same assert len(modules) == len(metadata.get('step_types')) # reformat annotations modules = [[_m.strip() for _m in _modules.split('&')] for _modules in modules] questions = [] source_codes = [] outputs = [] tags = [] for cell in example: if cell['cell_type'] == 'markdown': text = ''.join(cell['source']).strip() if modules: _modules = modules.pop(0) text += f"Please use {' and '.join(_modules)} modules." text = text.strip() + '\n' # append the formatted text questions.append(text) elif cell['cell_type'] == 'code': source_codes.append(''.join(cell['source'])) if cell['outputs'] and 'data' in cell['outputs'][-1]: if 'image/png' in cell['outputs'][-1]['data']: # skip vis temporarily due to lack of evaluation tags.append('vis') outputs.append( cell['outputs'][-1]['data']['image/png']) elif 'text/plain' in cell['outputs'][-1]['data']: tags.append('general') outputs.append(''.join( cell['outputs'][-1]['data']['text/plain'])) else: tags.append('exec') outputs.append(None) return dict( experiment=file, questions=sum(([ dict(role='user', content=question), dict(role='assistant', content=source_code) ] for question, source_code in zip(questions, source_codes)), []), references=dict(outputs=outputs, tags=tags, metadata=metadata, experiment=file), ) @LOAD_DATASET.register_module() class CIBenchDataset(BaseDataset): """Code Interpreter dataset.""" @staticmethod def load(path: str): """Load whole dataset.""" assert os.path.exists(path), f'Path {path} does not exist.' data_list = [] for cwd, dirs, files in os.walk(path): dirs.sort() files.sort() for f in files: if '.ipynb' in f: try: data = load_experiment(os.path.join(cwd, f)) except Exception: print(f'Error with file {os.path.join(cwd, f)}') continue data_list.append(data) dataset = Dataset.from_list(data_list) return dataset class CIBenchEvaluator(BaseEvaluator): """Evaluator for CI dataset. Args: text_evaluator (optional, dict): The text evaluator for text result comparison[]. Defaults to None, which use Rouge as defaults. Please notice that a extra key for `metric_name` should be set to get the exact metric result, such as `rouge1`. output_dir (optional, str): The directory to save experiment files in a markdown or notebook format. with_ipynb (bool): Generate ipynb correspondingly. Defaults to False. user_data_dir (str): The directory to load local files. Defaults to 'ENV', which means use environment variable `USER_DATA_DIR` to get the data dir. """ def __init__(self, text_evaluator: Optional[dict] = None, output_dir: Optional[str] = None, with_ipynb: bool = False, user_data_dir: str = 'ENV') -> None: if text_evaluator is None: from opencompass.openicl.icl_evaluator import RougeEvaluator self.text_evaluator = ICL_EVALUATORS.build( dict(type=RougeEvaluator)) self.text_eval_metric = 'rouge1' else: self.text_eval_metric = text_evaluator.pop('metric_name') self.text_evaluator = ICL_EVALUATORS.build(text_evaluator) # TODO: should use work dir for this task. self.output_dir = output_dir self.user_data_dir = self.check_user_data_dir(user_data_dir) self.with_ipynb = with_ipynb self.TAG_MAPPING = { 'exec': ('executable', self.valid_step), 'general': ('general_correct', self.correct_step), 'num': ('numeric_correct', self.correct_step), 'text': ('text_score', self.text_step), 'vis': ('vis_sim', self.vis_similarity_step), } def check_user_data_dir(self, user_data_dir): if user_data_dir == 'ENV': user_data_dir = os.environ.get('USER_DATA_DIR', '') user_data_dir = user_data_dir.rstrip('/') basename = osp.basename(user_data_dir) if basename and basename != 'data': user_data_dir = osp.join(user_data_dir, 'data') assert osp.exists(user_data_dir), \ f'a subfolder named `data` should exist under {user_data_dir}.' elif basename: assert osp.exists(user_data_dir), \ f'{user_data_dir} does not exist.' return user_data_dir @staticmethod def valid_step(step): """Whether the step is executable and valid.""" # Found the latest code interpreter to determine valid for action in step[::-1]: if action['type'] == 'IPythonInterpreter': if action['errmsg']: return False else: return True # No code interpreter for this step, reckon as False return False @staticmethod def correct_step(step, target): """Whether the step output is correct.""" # Found the latest code interpreter to determine correct for action in step[::-1]: if action['type'] == 'IPythonInterpreter': if action['result']: try: pred = action['result']['text'] match = re.search('```\n(.*?)\n```', pred, re.DOTALL) if match: out = match.group(1) return out == target or out in target except Exception: return False # Fall back to False return False def text_step(self, step, target): """Whether the step output is correct.""" # Found the latest code interpreter to determine correct for action in step[::-1]: if action['type'] == 'IPythonInterpreter': if action['result']: try: pred = action['result']['text'] match = re.search('```\n(.*?)\n```', pred, re.DOTALL) if match: out = match.group(1) score = self.text_evaluator.score([out], [target]) return score[self.text_eval_metric] / 100 except Exception: return False # Fall back to False return False @staticmethod def vis_similarity_step(step, target): """Whether the step output image has the same structure similarity with the given images.""" # Found the latest code interpreter to determine correct import base64 import skimage for action in step[::-1]: if action['type'] == 'IPythonInterpreter': if action['result']: try: pred = action['result']['text'] match = re.search(r'!\[fig-[0-9]*\]\((.*?)\)', pred, re.DOTALL) if match: img_pred = match.group(1) img2 = base64.b64decode(target) img2 = skimage.io.imread(img2, plugin='imageio') img1 = skimage.io.imread(img_pred, plugin='imageio') img1 = skimage.transform.resize(img1, img2.shape[:2]) img1 = 255 * img1 # Convert to integer data type pixels. img1 = img1.astype(np.uint8) ssim = skimage.metrics.structural_similarity( img1, img2, channel_axis=-1) # mse = skimage.metrics.mean_squared_error(img1, img2) # ssim greater better # mse smaller better but has no upper bound return ssim except Exception: return 0 # Fall back to 0 return 0 def save_results(self, origin_prompt, steps): """Save the prediction result in a markdown and notebook format.""" def check_jupytext(): """Check requirements existence.""" from shutil import which assert which('jupytext'), ( "Please install jupytext use 'pip install jupytext' to ensure" 'the conversion processes.') check_jupytext() p_list = [] from opencompass.lagent.actions.ipython_interpreter import extract_code for idx, (example_origin_prompt, example_steps) in enumerate(zip(origin_prompt, steps)): markdown_lines = [] for prompt, step in zip(example_origin_prompt, example_steps): for action in step[::-1]: if action['type'] == 'IPythonInterpreter': valid_action = action break # fall back to final action valid_action = step[-1] markdown_lines.append(prompt) markdown_lines.append('\n') code_text = valid_action['args']['text'] code_text = extract_code(code_text) code_text = '```python\n' + code_text + '\n```' markdown_lines.append(code_text) markdown_lines.append('\n') md_file = f'experiment{idx}.md' with open(md_file, 'w') as f: f.writelines(markdown_lines) # TODO: be careful for this # The result might be different with infer process # please check carefully # convert markdown to ipynb and exectue with error tolerance if self.with_ipynb: p = subprocess.Popen( 'jupytext --to ipynb --pipe-fmt ipynb ' "--pipe 'jupyter nbconvert --to ipynb --execute " f"--allow-errors --stdin --stdout' {md_file}", shell=True) p_list.append(p) # TODO: async wait for p in p_list: p.wait() def set_data_dir(self, work_dir): """Set work directory and link data files for save notebook results.""" if self.user_data_dir: basename = osp.basename(self.user_data_dir) if not osp.exists(osp.join(self.output_dir, basename)): os.symlink(self.user_data_dir, osp.join(self.output_dir, basename)) os.chdir(work_dir) def unset_data_dir(self, work_dir): """Change work directory and keep the symlink.""" os.chdir(work_dir) def single_exp(self, gold, steps): tags = gold['tags'] outputs = gold['outputs'] metadata = gold['metadata'] hard_tags = metadata.get('step_types', []) if hard_tags: tags = hard_tags # executable: exec succeed # general_correct: general correct # numeric_correct: numerical correct # text_score: text score # vis_sim: visual similarity result = defaultdict(list) for tag, step, output in zip(tags, steps, outputs): # check whether this step is valid result['executable'].append(self.valid_step(step)) if tag != 'exec': key, func = self.TAG_MAPPING[tag] result[key].append(func(step, output)) # add missing metric for better analyse if not exists if hard_tags: check_tags = ['exec', 'num', 'text', 'vis'] else: check_tags = ['exec', 'general', 'vis'] for tag in check_tags: key = self.TAG_MAPPING[tag][0] if key not in result: result[key] = [] return result def get_output_dir(self): """Get output dir from eval task. Notice: output dir should be in format xxx/data. All the needed files should be """ # hard hack for get output dir from eval task if hasattr(self, '_out_dir') and self.output_dir is None: self.output_dir = self._out_dir def score(self, predictions: List, references: List, steps: List, origin_prompt: List): """Calculate accuracy.""" cwd = os.getcwd() self.get_output_dir() if self.output_dir: if not osp.exists(self.output_dir): os.makedirs(self.output_dir) self.set_data_dir(self.output_dir) self.save_results(origin_prompt, steps) self.unset_data_dir(cwd) total_results = defaultdict(float) total_scores = defaultdict(float) total_nums = defaultdict(int) for gold, single_steps in zip(references, steps): result = self.single_exp(gold, single_steps) for k, v in result.items(): total_scores[k] += sum(v) total_nums[k] += len(v) for k, v in total_scores.items(): if total_nums[k] > 0: total_results[k] = total_scores[k] / total_nums[k] * 100 else: total_results[k] = -1 return total_results