from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import CMBDataset from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.utils.text_postprocessors import multiple_select_postprocess cmb_datasets = [] for split in ['val', 'test']: cmb_reader_cfg = dict( input_columns=['exam_type', 'exam_class', 'question_type', 'question', 'option_str'], output_column='answer', train_split=split, test_split=split, ) cmb_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict( role='HUMAN', prompt=f'以下是中国{{exam_type}}中{{exam_class}}考试的一道{{question_type}},不需要做任何分析和解释,直接输出答案选项。\n{{question}}\n{{option_str}} \n 答案: ', ), dict(role='BOT', prompt='{answer}'), ], ), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=10), ) cmb_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=multiple_select_postprocess), ) cmb_datasets.append( dict( abbr='cmb' if split == 'val' else 'cmb_test', type=CMBDataset, path='./data/CMB/', reader_cfg=cmb_reader_cfg, infer_cfg=cmb_infer_cfg, eval_cfg=cmb_eval_cfg, ) )