# flake8: noqa: E501 import csv import os import os.path as osp import re from collections import defaultdict from datetime import datetime import numpy as np from mmengine import ConfigDict from prettytable import from_csv from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg from .utils import get_judgeanswer_and_reference, get_outdir def post_process_allobj(judgement: str): """Input a string like below: xxx[[correct]]xxx, and extract the judge """ pattern = r'(?i)\[(incorrect|correct|正确|错误|Yes|No)\]' matched_result = re.findall(pattern, judgement) if matched_result: content = matched_result[0].lower() if content in ['correct', '正确', 'yes']: return {'score': 1} elif content in ['incorrect', '错误', 'no']: return {'score': 0} else: return None def get_capability_results( judged_answers, references, fout, fout_flag, model, ): capability_ratings = defaultdict(int) capability_counts = defaultdict(int) for ans, ref in zip(judged_answers, references): capability_ratings['total'] += ans['score'] capability_counts['total'] += 1 capability_avg_ratings = defaultdict(float) for capability, total_score in capability_ratings.items(): capability_avg_ratings[ capability] = total_score / capability_counts[capability] columns = list(capability_avg_ratings.keys()) columns.insert(0, columns.pop(columns.index('total'))) with open(fout, 'a+', newline='') as csvfile: writer = csv.writer(csvfile) if fout_flag == 0: writer.writerow(['model'] + columns) writer.writerow([model] + [capability_avg_ratings[column] for column in columns]) class AllObjSummarizer: """Do the subjectivity analyze based on evaluation results. Args: config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime. """ def __init__(self, config: ConfigDict, judge_type='single') -> None: self.judge_type = judge_type self.tasks = [] self.cfg = config if self.judge_type == 'single': self.eval_model_cfgs = self.cfg['eval']['partitioner']['models'] self.eval_model_abbrs = [ model_abbr_from_cfg(model) for model in self.eval_model_cfgs ] elif self.judge_type == 'pair': self.base_models = self.cfg['eval']['partitioner']['base_models'] self.compare_models = self.cfg['eval']['partitioner'][ 'compare_models'] self.judge_abbr = model_abbr_from_cfg( self.cfg['eval']['partitioner']['judge_models'][0]) self.judge_map = {'single': post_process_allobj} self.judge_function = self.judge_map[self.judge_type] def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): """Summarize the subjectivity analysis based on evaluation results. Args: time_str (str): Timestamp for file naming. Returns: pd.DataFrame: The summary results. """ if self.judge_type == 'single': dataset_cfgs = self.cfg['datasets'] judge_model = self.judge_abbr output_dir, results_folder = get_outdir(self.cfg, time_str) for dataset in dataset_cfgs: dataset_abbr = dataset_abbr_from_cfg(dataset) fout = osp.join( output_dir, 'judged-by--' + judge_model + '-' + dataset_abbr + '.csv') fout_flag = 0 for eval_model_abbr in self.eval_model_abbrs: subdir = eval_model_abbr + '_judged-by--' + self.judge_abbr subdir_path = os.path.join(results_folder, subdir) if os.path.isdir(subdir_path): model = eval_model_abbr judged_answers, references = get_judgeanswer_and_reference( dataset, subdir_path, self.judge_function) get_capability_results(judged_answers, references, fout, fout_flag, model) fout_flag += 1 else: print(subdir_path + ' is not exist! please check!') with open(fout, 'r') as f: x = from_csv(f) print(x)