import json import os import random import re import time from concurrent.futures import ThreadPoolExecutor from threading import Lock from typing import Dict, List, Optional, Union import httpx import jieba import requests from tqdm import tqdm from opencompass.registry import MODELS from opencompass.utils.prompt import PromptList from .base_api import BaseAPIModel PromptType = Union[PromptList, str] OPENAI_API_BASE = os.path.join( os.environ.get('OPENAI_BASE_URL', 'https://api.openai.com/v1/'), 'chat/completions', ) OPENAISDK_API_BASE = os.environ.get('OPENAI_BASE_URL', 'https://api.openai.com/v1/') O1_MODEL_LIST = ['o1', 'o3', 'o4'] @MODELS.register_module() class OpenAI(BaseAPIModel): """Model wrapper around OpenAI's models. Args: path (str): The name of OpenAI's model. max_seq_len (int): The maximum allowed sequence length of a model. Note that the length of prompt + generated tokens shall not exceed this value. Defaults to 2048. query_per_second (int): The maximum queries allowed per second between two consecutive calls of the API. Defaults to 1. retry (int): Number of retires if the API call fails. Defaults to 2. key (str or List[str]): OpenAI key(s). In particular, when it is set to "ENV", the key will be fetched from the environment variable $OPENAI_API_KEY, as how openai defaults to be. If it's a list, the keys will be used in round-robin manner. Defaults to 'ENV'. org (str or List[str], optional): OpenAI organization(s). If not specified, OpenAI uses the default organization bound to each API key. If specified, the orgs will be posted with each request in round-robin manner. Defaults to None. meta_template (Dict, optional): The model's meta prompt template if needed, in case the requirement of injecting or wrapping of any meta instructions. openai_api_base (str): The base url of OpenAI's API. Defaults to 'https://api.openai.com/v1/chat/completions'. openai_proxy_url (str, optional): An optional proxy url to use when connecting to OpenAI's API. When set to 'ENV', the url will be fetched from the environment variable $OPENAI_PROXY_URL. Defaults to None. mode (str, optional): The method of input truncation when input length exceeds max_seq_len. 'front','mid' and 'rear' represents the part of input to truncate. Defaults to 'none'. temperature (float, optional): What sampling temperature to use. If not None, will override the temperature in the `generate()` call. Defaults to None. tokenizer_path (str, optional): The path to the tokenizer. Use path if 'tokenizer_path' is None, otherwise use the 'tokenizer_path'. Defaults to None. extra_body (Dict, optional): Add additional JSON properties to the request think_tag (str, optional): The tag to use for reasoning content. Defaults to ''. """ is_api: bool = True def __init__( self, path: str = 'gpt-3.5-turbo', max_seq_len: int = 16384, query_per_second: int = 1, rpm_verbose: bool = False, retry: int = 2, key: Union[str, List[str]] = 'ENV', org: Optional[Union[str, List[str]]] = None, meta_template: Optional[Dict] = None, openai_api_base: str = OPENAI_API_BASE, openai_proxy_url: Optional[str] = None, mode: str = 'none', logprobs: Optional[bool] = False, top_logprobs: Optional[int] = None, temperature: Optional[float] = None, tokenizer_path: Optional[str] = None, extra_body: Optional[Dict] = None, verbose: bool = False, think_tag: str = '', ): super().__init__( path=path, max_seq_len=max_seq_len, meta_template=meta_template, query_per_second=query_per_second, rpm_verbose=rpm_verbose, retry=retry, verbose=verbose, ) import tiktoken self.tiktoken = tiktoken self.temperature = temperature assert mode in ['none', 'front', 'mid', 'rear'] self.mode = mode self.logprobs = logprobs self.top_logprobs = top_logprobs self.tokenizer_path = tokenizer_path self.hf_tokenizer = None self.extra_body = extra_body self.think_tag = think_tag if isinstance(key, str): if key == 'ENV': if 'OPENAI_API_KEY' not in os.environ: raise ValueError('OpenAI API key is not set.') self.keys = os.getenv('OPENAI_API_KEY').split(',') else: self.keys = [key] else: self.keys = key # record invalid keys and skip them when requesting API # - keys have insufficient_quota self.invalid_keys = set() self.key_ctr = 0 if isinstance(org, str): self.orgs = [org] else: self.orgs = org self.org_ctr = 0 self.url = openai_api_base if openai_proxy_url == 'ENV': if 'OPENAI_PROXY_URL' not in os.environ: raise ValueError('OPENAI_PROXY_URL is not set.') self.proxy_url = os.getenv('OPENAI_PROXY_URL') else: self.proxy_url = openai_proxy_url self.path = path def generate( self, inputs: List[PromptType], max_out_len: int = 512, temperature: float = 0.7, **kwargs, ) -> List[str]: """Generate results given a list of inputs. Args: inputs (List[PromptType]): A list of strings or PromptDicts. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. temperature (float): What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Defaults to 0.7. Returns: List[str]: A list of generated strings. """ if self.temperature is not None: temperature = self.temperature with ThreadPoolExecutor() as executor: results = list( tqdm( executor.map( self._generate, inputs, [max_out_len] * len(inputs), [temperature] * len(inputs), ), total=len(inputs), desc='Inferencing', )) return results def _generate(self, input: PromptType, max_out_len: int, temperature: float) -> str: """Generate results given a list of inputs. Args: inputs (PromptType): A string or PromptDict. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. temperature (float): What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Returns: str: The generated string. """ assert isinstance(input, (str, PromptList)) messages, max_out_len = self._preprocess_messages( input, max_out_len, self.max_seq_len, self.mode, self.get_token_len) max_num_retries = 0 while max_num_retries < self.retry: self.wait() with Lock(): if len(self.invalid_keys) == len(self.keys): raise RuntimeError('All keys have insufficient quota.') # find the next valid key while True: self.key_ctr += 1 if self.key_ctr == len(self.keys): self.key_ctr = 0 if self.keys[self.key_ctr] not in self.invalid_keys: break key = self.keys[self.key_ctr] header = { 'Authorization': f'Bearer {key}', 'content-type': 'application/json', 'api-key': key, } if self.orgs: with Lock(): self.org_ctr += 1 if self.org_ctr == len(self.orgs): self.org_ctr = 0 header['OpenAI-Organization'] = self.orgs[self.org_ctr] try: if any(model in self.path for model in O1_MODEL_LIST): self.logger.warning( f"'max_token' is unsupported for model {self.path}") self.logger.warning( f'We use max_out_len: {max_out_len} for this query') data = dict( model=self.path, messages=messages, max_completion_tokens=max_out_len, n=1, logprobs=self.logprobs, top_logprobs=self.top_logprobs, stop=None, temperature=temperature, ) else: data = dict( model=self.path, messages=messages, max_tokens=max_out_len, n=1, logprobs=self.logprobs, top_logprobs=self.top_logprobs, stop=None, temperature=temperature, ) if self.extra_body: data.update(self.extra_body) if isinstance(self.url, list): import random url = self.url[random.randint(0, len(self.url) - 1)] else: url = self.url if self.proxy_url is None: raw_response = requests.post(url, headers=header, data=json.dumps(data)) else: proxies = { 'http': self.proxy_url, 'https': self.proxy_url, } if self.verbose: self.logger.debug( f'Start send query to {self.proxy_url}') raw_response = requests.post( url, headers=header, data=json.dumps(data), proxies=proxies, ) if self.verbose: self.logger.debug( f'Get response from {self.proxy_url}') except requests.ConnectionError: self.logger.error('Got connection error, retrying...') continue try: if raw_response.status_code != 200: self.logger.error(f'Request failed with status code ' f'{raw_response.status_code}, response: ' f'{raw_response.content.decode()}') continue response = raw_response.json() except requests.JSONDecodeError: self.logger.error(f'JsonDecode error, got status code ' f'{raw_response.status_code}, response: ' f'{raw_response.content.decode()}') continue self.logger.debug(str(response)) try: if self.logprobs: return response['choices'] else: # Extract content and reasoning_content from response message = response['choices'][0]['message'] content = message.get('content', '') or '' reasoning_content = message.get('reasoning_content', '') or '' # Handle reasoning_content similar to OpenAISDK if reasoning_content: if self.verbose: self.logger.info( 'Extracting reasoning content and tags.' 'Reasoning Content: %s, \n' 'Tags: %s, \n' 'Content: %s', reasoning_content, self.think_tag, content) if content: return reasoning_content + self.think_tag + content else: return reasoning_content else: return content.strip() except KeyError: if 'error' in response: if response['error']['code'] == 'rate_limit_exceeded': time.sleep(10) self.logger.warn('Rate limit exceeded, retrying...') continue elif response['error']['code'] == 'insufficient_quota': self.invalid_keys.add(key) self.logger.warn(f'insufficient_quota key: {key}') continue elif response['error']['code'] == 'invalid_prompt': self.logger.warn('Invalid prompt:', str(input)) return '' elif response['error']['type'] == 'invalid_prompt': self.logger.warn('Invalid prompt:', str(input)) return '' self.logger.error( 'Find error message in response: ', str(response['error']), ) max_num_retries += 1 raise RuntimeError('Calling OpenAI failed after retrying for ' f'{max_num_retries} times. Check the logs for ' 'details.') def get_token_len(self, prompt: str) -> int: """Get lengths of the tokenized string. Only English and Chinese characters are counted for now. Users are encouraged to override this method if more accurate length is needed. Args: prompt (str): Input string. Returns: int: Length of the input tokens """ assert self.tokenizer_path or self.path try: if self.verbose: self.logger.info(f'Used tokenizer_path: {self.tokenizer_path}') tokenizer_path = (self.tokenizer_path if self.tokenizer_path else self.path) try: if self.verbose: self.logger.info( f'Start load tiktoken encoding: {tokenizer_path}') enc = self.tiktoken.encoding_for_model(tokenizer_path) if self.verbose: self.logger.info( f'Successfully tiktoken encoding: {tokenizer_path}') return len(enc.encode(prompt, disallowed_special=())) except Exception as e: self.logger.warn(f'{e}, tiktoken encoding cannot load ' f'{tokenizer_path}') from transformers import AutoTokenizer if self.hf_tokenizer is None: if self.verbose: self.logger.info( f'Start load hf tokenizer: {tokenizer_path}') self.hf_tokenizer = AutoTokenizer.from_pretrained( tokenizer_path, trust_remote_code=True) self.logger.info( f'Successfully load HF Tokenizer from {tokenizer_path}' ) return len(self.hf_tokenizer(prompt).input_ids) except Exception: self.logger.warn( 'Can not get tokenizer automatically, ' 'will use default tokenizer gpt-4 for length calculation.') default_tokenizer = 'gpt-4' enc = self.tiktoken.encoding_for_model(default_tokenizer) if self.verbose: self.logger.info( f'Successfully load default tiktoken tokenizer: ' f' {default_tokenizer}') return len(enc.encode(prompt, disallowed_special=())) def _bin_trim(self, prompt: str, num_token: int, mode: str) -> str: """Get a suffix of prompt which is no longer than num_token tokens. Args: prompt (str): Input string. num_token (int): The upper bound of token numbers. mode (str): The method of input truncation ('front', 'mid', or 'rear') Returns: str: The trimmed prompt. """ token_len = self.get_token_len(prompt) if token_len <= num_token: return prompt pattern = re.compile(r'[\u4e00-\u9fa5]') if pattern.search(prompt): words = list(jieba.cut(prompt, cut_all=False)) sep = '' else: words = prompt.split(' ') sep = ' ' l, r = 1, len(words) while l + 2 < r: mid = (l + r) // 2 if mode == 'front': cur_prompt = sep.join(words[-mid:]) elif mode == 'mid': cur_prompt = sep.join(words[:mid]) + sep.join(words[-mid:]) elif mode == 'rear': cur_prompt = sep.join(words[:mid]) if self.get_token_len(cur_prompt) <= num_token: l = mid # noqa: E741 else: r = mid if mode == 'front': prompt = sep.join(words[-l:]) elif mode == 'mid': prompt = sep.join(words[:l]) + sep.join(words[-l:]) elif mode == 'rear': prompt = sep.join(words[:l]) return prompt def _preprocess_messages( self, input: Union[str, PromptList], max_out_len: int, max_seq_len: int, mode: str, get_token_len_func, ) -> tuple[List[Dict], int]: """Preprocess input into messages format and calculate max output length. Args: input: Input prompt as string or PromptList max_out_len: Maximum output length max_seq_len: Maximum sequence length mode: The method of input truncation get_token_len_func: Function to calculate token length Returns: tuple: (processed messages list, adjusted max_out_len) """ # Check input length when mode is 'none' if mode == 'none': input_len = (get_token_len_func(input) if isinstance( input, str) else sum( get_token_len_func(item['prompt']) for item in input)) if input_len > max_seq_len: raise ValueError( f'Input length ({input_len}) exceeds max_seq_len ' f'({max_seq_len}) and mode is set to "none". Please ' f'either change the mode or increase the max_seq_len.') # Trim input if needed def bin_trim_wrapper(text): trim_length = max_seq_len - 100 if max_out_len is not None: trim_length -= max_out_len return self._bin_trim(text, trim_length, mode) if isinstance(input, str) and mode != 'none': input = bin_trim_wrapper(input) # Convert input to messages format if isinstance(input, str): messages = [{'role': 'user', 'content': input}] input_len = get_token_len_func(input) else: messages = [] processed_prompts = [] for item in input: input_content = item['prompt'] if mode != 'none': input_content = bin_trim_wrapper(input_content) processed_prompts.append(input_content) msg = {'content': input_content} if item['role'] == 'HUMAN': msg['role'] = 'user' elif item['role'] == 'BOT': msg['role'] = 'assistant' elif item['role'] == 'SYSTEM': msg['role'] = 'system' messages.append(msg) input_len = sum( get_token_len_func(prompt) for prompt in processed_prompts) # Adjust max_out_len if max_out_len is not None: original_max_out_len = max_out_len max_out_len = min(max_out_len, max_seq_len - input_len - 100) if max_out_len <= 0: raise ValueError( f'max_out_len ({max_out_len}) is less than or equal to 0. ' f'This may be due to input length ({input_len}) being too ' f'close to max_seq_len ({max_seq_len}). Please increase ' f'max_seq_len or use a truncation mode other than "none".') if max_out_len < original_max_out_len: self.logger.warning( f'max_out_len was truncated from {original_max_out_len} ' f'to {max_out_len} due to input length') return messages, max_out_len class OpenAISDK(OpenAI): def __init__(self, path: str = 'gpt-3.5-turbo', max_seq_len: int = 16384, query_per_second: int = 1, rpm_verbose: bool = False, retry: int = 2, key: str | List[str] = 'ENV', org: str | List[str] | None = None, meta_template: Dict | None = None, openai_api_base: str | List[str] = OPENAISDK_API_BASE, openai_proxy_url: Optional[str] = None, mode: str = 'none', logprobs: bool | None = False, top_logprobs: int | None = None, temperature: float | None = None, tokenizer_path: str | None = None, extra_body: Dict | None = None, verbose: bool = False, http_client_cfg: dict = {}, status_code_mappings: dict = {}, think_tag: str = ''): super().__init__( path, max_seq_len, query_per_second, rpm_verbose, retry, key, org, meta_template, openai_api_base, openai_proxy_url, mode, logprobs, top_logprobs, temperature, tokenizer_path, extra_body, verbose=verbose, ) from openai import OpenAI # support multiple api_base for acceleration if isinstance(openai_api_base, List): self.openai_api_base = random.choice(openai_api_base) else: self.openai_api_base = openai_api_base if self.proxy_url or http_client_cfg: if self.proxy_url: http_client_cfg['proxies'] = { 'http://': self.proxy_url, 'https://': self.proxy_url, } self.openai_client = OpenAI( base_url=self.openai_api_base, api_key=key, http_client=httpx.Client( **http_client_cfg) if http_client_cfg else None, ) if self.verbose: self.logger.info(f'Used openai_client: {self.openai_client}') self.status_code_mappings = status_code_mappings self.think_tag = think_tag def _generate( self, input: PromptList | str, max_out_len: int, temperature: float, timeout: int = 3600, ) -> str: """Generate results given a list of inputs. Args: input (PromptType): A string or PromptDict. max_out_len (int): The maximum length of the output. temperature (float): What sampling temperature to use. timeout (int, optional): Timeout in seconds for the API call. Defaults to 3600 (60 minutes). Returns: str: The generated string. """ from openai import APIStatusError, BadRequestError assert isinstance(input, (str, PromptList)) messages, max_out_len = self._preprocess_messages( input, max_out_len, self.max_seq_len, self.mode, self.get_token_len) num_retries = 0 while num_retries < self.retry: self.wait() if any(model in self.path for model in O1_MODEL_LIST): self.logger.warning( f"'max_token' is unsupported for model {self.path}") self.logger.warning( f'We use max_out_len: {max_out_len} for this query') query_data = dict( model=self.path, max_completion_tokens=max_out_len, n=1, messages=messages, extra_body=self.extra_body, ) else: query_data = dict( model=self.path, max_tokens=max_out_len, n=1, temperature=self.temperature, messages=messages, extra_body=self.extra_body, ) try: if self.verbose: self.logger.info('Start calling OpenAI API') responses = self.openai_client.chat.completions.create( **query_data, timeout=timeout) # timeout in seconds if self.verbose: self.logger.info( 'Successfully get response from OpenAI API ' 'with query: %s', query_data) try: self.logger.info(responses) except Exception: pass # noqa F841 # Check if response is empty or content is empty if (not responses.choices or not responses.choices[0].message or (not responses.choices[0].message.content and not getattr( responses.choices[0].message, 'reasoning_content', '', ))): # noqa: E125 # There is case that server does not return any content if responses.choices[0].finish_reason == 'stop': self.logger.info( 'Server does not return any content ' 'and stop reason is , ' 'the input query is: %s', query_data) return '' self.logger.error( 'Failed to extract content from the responses. ' 'Please check the API response for detail information.' 'API responses: %s', responses, ) num_retries += 1 continue reasoning_content = (getattr(responses.choices[0].message, 'reasoning_content', '') or '') content = responses.choices[0].message.content or '' # Concat Reasoning Content and tags to content if reasoning_content: if self.verbose: self.logger.info( 'Follow' 'vllm/reasoning/deepseek_r1_reasoning_parser' 'to parse the reasoning content and tags' 'Reasoning Content: %s, \n' 'Tags: %s, \n' 'Content: %s', reasoning_content, self.think_tag, content, ) if content: return reasoning_content + self.think_tag + content else: return reasoning_content else: return content except (BadRequestError, APIStatusError) as e: # Handle BadRequest status # You can specify self.status_code_mappings to bypass \ # API sensitivity blocks # For example: status_code_mappings={400: 'Input data \ # may contain inappropriate content.'} status_code = e.status_code if (status_code is not None and status_code in self.status_code_mappings): error_message = self.status_code_mappings[status_code] self.logger.error( f'error occurs at {self.openai_api_base}') self.logger.info(f'Status Code: {status_code}, \n' f'Original Error Message: {e}, \n' f'Return Message: {error_message} ') return error_message else: self.logger.error( f'error occurs at {self.openai_api_base}') self.logger.error(e) except Exception as e: self.logger.error(f'error occurs at {self.openai_api_base}') self.logger.error(e) num_retries += 1 raise RuntimeError('Calling OpenAI API failed after retrying for ' f'{self.retry} times. Check the logs for details.')