from mmengine.config import read_base from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import MMLUProDataset from opencompass.utils.text_postprocessors import first_option_postprocess with read_base(): from .mmlu_pro_categories import categories mmlu_pro_datasets = [] for category in categories: mmlu_pro_reader_cfg = dict( input_columns=['question', 'cot_content', 'options_str'], output_column='answer', train_split='validation', test_split='test', ) mmlu_pro_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template=dict(round=[ dict(role='HUMAN', prompt='Question:\n{question}\nOptions:\n{options_str}'), dict(role='BOT', prompt="Answer: Let's think step by step. {cot_content}") ]), ), prompt_template=dict( type=PromptTemplate, template=dict( begin='', round=[ dict(role='HUMAN', prompt='Question:\n{question}\nOptions:\n{options_str}'), ], ), ice_token='', ), retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]), inferencer=dict(type=GenInferencer), ) mmlu_pro_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=first_option_postprocess, options='ABCDEFGHIJKLMNOP'), ) mmlu_pro_datasets.append( dict( abbr=f'mmlu_pro_{category.replace(" ", "_")}', type=MMLUProDataset, path='opencompass/mmlu_pro', category=category, reader_cfg=mmlu_pro_reader_cfg, infer_cfg=mmlu_pro_infer_cfg, eval_cfg=mmlu_pro_eval_cfg, ))