from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import GSM8KDataset, gsm8k_dataset_postprocess from opencompass.datasets import MATHEvaluator, math_postprocess_v2 from opencompass.utils.model_postprocessors import navie_model_postprocess from opencompass.utils.postprocessors.naive import MATH_NAVIE_PROMPT_TEMPLATE gsm8k_reader_cfg = dict(input_columns=['question'], output_column='answer') gsm8k_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='{question}\nPlease reason step by step, and put your final answer within \\boxed{}.'), ], ), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512), ) # # You can write your own postprocess prompt like: # GSM8K_NAVIE_PROMPT_TEMPLATE = """ # There is a detailed explanation of the final answer you should extract: # 1. ... # 2. ... # ... # """ gsm8k_eval_cfg = dict( evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2), dataset_postprocessor=dict(type=gsm8k_dataset_postprocess), model_postprocessor=dict( type=navie_model_postprocess, custom_instruction=MATH_NAVIE_PROMPT_TEMPLATE, model_name='', api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1') ) gsm8k_datasets = [ dict( abbr='gsm8k', type=GSM8KDataset, path='opencompass/gsm8k', reader_cfg=gsm8k_reader_cfg, infer_cfg=gsm8k_infer_cfg, eval_cfg=gsm8k_eval_cfg, ) ]