from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import DS1000Dataset, DS1000ServiceEvaluator ds1000_reader_cfg = dict( input_columns=['prompt'], output_column='test_column', train_split='test', test_split='test') ds1000_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt='{prompt}', ), ]), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) ds1000_eval_cfg_dict = { lib: dict( evaluator=dict( type=DS1000ServiceEvaluator, lib=lib, ip_address= 'localhost', # replace to your code_eval_server ip_address, port port=5000 ), pred_role='BOT') for lib in [ 'Pandas', 'Numpy', 'Tensorflow', 'Scipy', 'Sklearn', 'Pytorch', 'Matplotlib', ] } # The DS-1000 dataset can be downloaded from # https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip ds1000_datasets = [ dict( abbr=f'ds1000_{lib}', type=DS1000Dataset, path='./data/ds1000_data/', libs=f'{lib}', reader_cfg=ds1000_reader_cfg, infer_cfg=ds1000_infer_cfg, eval_cfg=ds1000_eval_cfg_dict[lib], ) for lib in [ 'Pandas', 'Numpy', 'Tensorflow', 'Scipy', 'Sklearn', 'Pytorch', 'Matplotlib', ] ]