from os import getenv as gv from opencompass.models import HuggingFaceCausalLM from mmengine.config import read_base with read_base(): from .datasets.subjective.compassbench.compassbench_compare import subjective_datasets from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI from opencompass.partitioners import NaivePartitioner, SizePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.partitioners.sub_size import SubjectiveSizePartitioner from opencompass.runners import LocalRunner from opencompass.runners import SlurmSequentialRunner from opencompass.tasks import OpenICLInferTask from opencompass.tasks.subjective_eval import SubjectiveEvalTask from opencompass.summarizers import CompassBenchSummarizer api_meta_template = dict( round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ], reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')], ) # -------------Inference Stage ---------------------------------------- from opencompass.models import HuggingFacewithChatTemplate models = [ dict( type=HuggingFacewithChatTemplate, abbr='internlm2-chat-7b-hf', path='internlm/internlm2-chat-7b', max_out_len=1024, batch_size=8, run_cfg=dict(num_gpus=1), stop_words=['', '<|im_end|>'], generation_kwargs=dict( do_sample=True, ), ) ] datasets = [*subjective_datasets] infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict( type=SlurmSequentialRunner, partition='llmeval', quotatype='reserved', max_num_workers=256, task=dict(type=OpenICLInferTask), ), ) gpt4 = dict( abbr='gpt4-turbo', type=OpenAI, path='gpt-4-1106-preview', key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=2048, max_seq_len=4096, batch_size=4, retry=20, temperature=1, ) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions # -------------Evalation Stage ---------------------------------------- ## ------------- JudgeLLM Configuration judge_models = [dict( abbr='GPT4-Turbo', type=OpenAI, path='gpt-4-1106-preview', key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=1024, max_seq_len=4096, batch_size=2, retry=20, temperature=0, )] judge_models = [ dict( type=HuggingFacewithChatTemplate, abbr='internlm102b', path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf', max_out_len=1024, batch_size=8, run_cfg=dict(num_gpus=4), stop_words=['', '<|im_end|>'], ), dict( type=HuggingFacewithChatTemplate, abbr='internlm102b2', path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf', max_out_len=1024, batch_size=8, run_cfg=dict(num_gpus=4), stop_words=['', '<|im_end|>'], ), dict( type=HuggingFacewithChatTemplate, abbr='internlm102b3', path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf', max_out_len=1024, batch_size=8, run_cfg=dict(num_gpus=4), stop_words=['', '<|im_end|>'], ) ] ## ------------- Evaluation Configuration eval = dict( partitioner=dict( type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000000, mode='m2n', infer_order='double', base_models=[gpt4], compare_models=models, judge_models=judge_models, ), runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)), #given_pred = [{'abbr':'gpt4-turbo', 'path':''}] ) work_dir = 'outputs/compassbench/' summarizer = dict(type=CompassBenchSummarizer, summary_type='half_add')