from mmengine.config import read_base with read_base(): from .datasets.subjective.alpaca_eval.alpacav1_judgeby_gpt4 import subjective_datasets as alpacav1 from .datasets.subjective.alpaca_eval.alpacav2_judgeby_gpt4 import subjective_datasets as alpacav2 from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3 from opencompass.models.openai_api import OpenAI from opencompass.partitioners import NaivePartitioner, SizePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.partitioners.sub_size import SubjectiveSizePartitioner from opencompass.runners import LocalRunner from opencompass.runners import SlurmSequentialRunner from opencompass.tasks import OpenICLInferTask from opencompass.tasks.subjective_eval import SubjectiveEvalTask from opencompass.summarizers import AlpacaSummarizer api_meta_template = dict( round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ], reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')], ) # -------------Inference Stage ---------------------------------------- # For subjective evaluation, we often set do sample for models models = [ dict( type=HuggingFaceChatGLM3, abbr='chatglm3-6b-hf', path='THUDM/chatglm3-6b', tokenizer_path='THUDM/chatglm3-6b', model_kwargs=dict( device_map='auto', trust_remote_code=True, ), tokenizer_kwargs=dict( padding_side='left', truncation_side='left', trust_remote_code=True, ), generation_kwargs=dict( do_sample=True, ), meta_template=api_meta_template, max_out_len=2048, max_seq_len=4096, batch_size=8, run_cfg=dict(num_gpus=1, num_procs=1), ) ] datasets = [*alpacav2] gpt4 = dict( abbr='gpt4-turbo', type=OpenAI, path='gpt-4-1106-preview', key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=2048, max_seq_len=4096, batch_size=4, retry=20, temperature=1, ) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions # -------------Evalation Stage ---------------------------------------- ## ------------- JudgeLLM Configuration judge_models = [dict( abbr='GPT4-Turbo', type=OpenAI, path='gpt-4-1106-preview', key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=1024, max_seq_len=4096, batch_size=2, retry=20, temperature=0, )] ## ------------- Evaluation Configuration eval = dict( partitioner=dict( type=SubjectiveSizePartitioner, max_task_size=1000, mode='m2n', base_models=[gpt4], compare_models=models, infer_order='random', judge_models=judge_models ), runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)), given_pred = [{'abbr':'gpt4-turbo', 'path':''}] ) work_dir = 'outputs/alpaca/' summarizer = dict(type=AlpacaSummarizer, judge_type='v2')