from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2 humaneval_reader_cfg = dict( input_columns=['prompt'], output_column='task_id', train_split='test') # TODO: allow empty output-column humaneval_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt='完成以下Python代码任务:\n{prompt}'), ])), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512)) humaneval_eval_cfg = dict( evaluator=dict(type=HumanEvalEvaluator), pred_role='BOT', k=[1, 10, 100], # the parameter only for humaneval pred_postprocessor=dict(type=humaneval_postprocess_v2), ) humaneval_cn_datasets = [ dict( abbr='openai_humaneval_cn_repeat10', type=HumanevalDataset, path='./data/humaneval_cn/human-eval-cn-v2-20210705.jsonl', num_repeats=10, reader_cfg=humaneval_reader_cfg, infer_cfg=humaneval_infer_cfg, eval_cfg=humaneval_eval_cfg) ]