# USED IN BASE MODEL from mmengine.config import read_base from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import DropOpenAIDataset, DropOpenAIEvaluator with read_base(): from .drop_examples import drop_examples # noqa: F401, F403 drop_reader_cfg = dict( input_columns=['prompt'], output_column='answers', train_split='validation', test_split='validation', ) template = f'''\ You will be asked to read a passage and answer a question. Think step by step, then write a line of the form "Answer: $ANSWER" at the end of your response. Some examples of passages and Q&A are provided below. {drop_examples} # Your Task --- {{prompt}}''' drop_infer_cfg = dict( prompt_template=dict(type=PromptTemplate, template=dict(round=[dict(role='HUMAN', prompt=template)])), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, stopping_criteria=['---', 'Passage', 'Question', 'You will be asked']),) drop_eval_cfg = dict(evaluator=dict(type=DropOpenAIEvaluator)) drop_datasets = [ dict( abbr='drop', type=DropOpenAIDataset, path='data/drop_simple_eval/dev.jsonl', reader_cfg=drop_reader_cfg, infer_cfg=drop_infer_cfg, eval_cfg=drop_eval_cfg) ]