import os.path as osp from typing import Dict, List, Optional import mmengine from mmengine.config import ConfigDict from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.registry import ICL_PROMPT_TEMPLATES from opencompass.utils import build_dataset_from_cfg, build_model_from_cfg from opencompass.utils.logging import get_logger from opencompass.utils.text_postprocessors import first_number_postprocess from opencompass.utils.types import get_type_from_cfg class LMEvaluator: """Evaluate output with language model. Args: prompt_template (ConfigDict): Prompt template configuration. Used to prompt the language model for scores. User can use two reserved keywords, ``{prediction}`` and ``{reference}``, referring to the prediction and optionally the reference answer. judge_cfg (ConfigDict): The config of language model as a judge. output_path (str): The path to prediction output. dataset_cfg (ConfigDict, optional): The config of the dataset to be evaluated. postprocessor (ConfigDict): The model prediction's postprocessor config. """ def __init__( self, prompt_template: ConfigDict, judge_cfg: ConfigDict, output_path: str, dataset_cfg: Optional[ConfigDict] = None, postprocessor: ConfigDict = dict(type=first_number_postprocess) ) -> None: self.output_path = output_path out_dir, out_name = osp.split(output_path) if not out_dir: out_dir = './' self.prompt_tmpl = ICL_PROMPT_TEMPLATES.build(prompt_template) max_out_len = judge_cfg.get('max_out_len', None) batch_size = judge_cfg.get('batch_size', None) model = build_model_from_cfg(model_cfg=judge_cfg) self.inferencer = GenInferencer(model, max_out_len=max_out_len, batch_size=batch_size, output_json_filepath=out_dir, output_json_filename=out_name) self.postprocessor = get_type_from_cfg(postprocessor) self.logger = get_logger() self.dataset_cfg = dataset_cfg def score(self, predictions, references: Optional[List] = None) -> Dict: if self.dataset_cfg: dataset = build_dataset_from_cfg(self.dataset_cfg) dataset.reader.dataset['test'] = dataset.test.add_column( 'prediction', predictions) dataset.reader.input_columns.append('prediction') if references: dataset.reader.input_columns.append('reference') dataset.reader.dataset['test'] = dataset.test.add_column( 'reference', references) else: from opencompass.datasets.lmeval import LMEvalDataset input_columns = ['prediction'] if references: input_columns.append('reference') dataset = LMEvalDataset(reader_cfg=dict( input_columns=input_columns, output_column=None, train_split='test'), predictions=predictions, references=references) retriever = ZeroRetriever(dataset) self.inferencer.inference(retriever=retriever, prompt_template=self.prompt_tmpl) output = mmengine.load(self.output_path) scores = [] for k, v in output.items(): score = self.postprocessor(v['prediction']) output[k]['score'] = score scores.append(score) try: output['score'] = sum(scores) / len(scores) except Exception: pass return output