from mmengine.config import read_base from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import OlympiadBenchDataset, OlympiadBenchEvaluator, olympiadbench_postprocess_v2 with read_base(): from .OlympiadBench_categories import categories # Create prompter instance for problems olympiadbench_prompter_cfg = dict( type='OlympiadBenchPrompter' ) olympiadbench_reader_cfg = dict( input_columns=[ 'problem', 'language', 'subject', 'question_type', 'answer_type', 'is_multiple_answer', 'unit', 'questions' ], output_column='solution' ) olympiadbench_datasets = [] for _name in categories: olympiadbench_infer_cfg = dict( prompt_template=dict( type='OlympiadBenchTemplate' ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) olympiadbench_eval_cfg = dict( evaluator=dict(type=OlympiadBenchEvaluator, version='v2'), pred_postprocessor=dict(type=olympiadbench_postprocess_v2), ) olympiadbench_datasets.append( dict( type=OlympiadBenchDataset, abbr=f'OlympiadBench_{_name}', path='opencompass/OlympiadBench', name=_name, reader_cfg=olympiadbench_reader_cfg, infer_cfg=olympiadbench_infer_cfg, eval_cfg=olympiadbench_eval_cfg, ) ) del _name