# General Math Evaluation Guidance ## Introduction Mathematical reasoning is a crucial capability for large language models (LLMs). To evaluate a model's mathematical abilities, we need to test its capability to solve mathematical problems step by step and provide accurate final answers. OpenCompass provides a convenient way to evaluate mathematical reasoning through the CustomDataset and MATHEvaluator components. ## Dataset Format The math evaluation dataset should be in either JSON Lines (.jsonl) or CSV format. Each problem should contain at least: - A problem statement - A solution/answer (typically in LaTeX format with the final answer in \\boxed{}) Example JSONL format: ```json {"problem": "Find the value of x if 2x + 3 = 7", "solution": "Let's solve step by step:\n2x + 3 = 7\n2x = 7 - 3\n2x = 4\nx = 2\nTherefore, \\boxed{2}"} ``` Example CSV format: ```csv problem,solution "Find the value of x if 2x + 3 = 7","Let's solve step by step:\n2x + 3 = 7\n2x = 7 - 3\n2x = 4\nx = 2\nTherefore, \\boxed{2}" ``` ## Configuration To evaluate mathematical reasoning, you'll need to set up three main components: 1. Dataset Reader Configuration ```python math_reader_cfg = dict( input_columns=['problem'], # Column name for the question output_column='solution' # Column name for the answer ) ``` 2. Inference Configuration ```python math_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict( role='HUMAN', prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.', ), ] ), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) ``` 3. Evaluation Configuration ```python math_eval_cfg = dict( evaluator=dict(type=MATHEvaluator), ) ``` ## Using CustomDataset Here's how to set up a complete configuration for math evaluation: ```python from mmengine.config import read_base from opencompass.models import TurboMindModelwithChatTemplate from opencompass.datasets import CustomDataset math_datasets = [ dict( type=CustomDataset, abbr='my-math-dataset', # Dataset abbreviation path='path/to/your/dataset', # Path to your dataset file reader_cfg=math_reader_cfg, infer_cfg=math_infer_cfg, eval_cfg=math_eval_cfg, ) ] ``` ## MATHEvaluator The MATHEvaluator is specifically designed to evaluate mathematical answers. It is developed based on the math_verify library, which provides mathematical expression parsing and verification capabilities, supporting extraction and equivalence verification for both LaTeX and general expressions. The MATHEvaluator implements: 1. Extracts answers from both predictions and references using LaTeX extraction 2. Handles various LaTeX formats and environments 3. Verifies mathematical equivalence between predicted and reference answers 4. Provides detailed evaluation results including: - Accuracy score - Detailed comparison between predictions and references - Parse results of both predicted and reference answers The evaluator supports: - Basic arithmetic operations - Fractions and decimals - Algebraic expressions - Trigonometric functions - Roots and exponents - Mathematical symbols and operators Example evaluation output: ```python { 'accuracy': 85.0, # Percentage of correct answers 'details': [ { 'predictions': 'x = 2', # Parsed prediction 'references': 'x = 2', # Parsed reference 'correct': True # Whether they match }, # ... more results ] } ``` ## Complete Example Here's a complete example of how to set up math evaluation: ```python from mmengine.config import read_base from opencompass.models import TurboMindModelwithChatTemplate from opencompass.datasets import CustomDataset from opencompass.openicl.icl_evaluator.math_evaluator import MATHEvaluator from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer # Dataset reader configuration math_reader_cfg = dict(input_columns=['problem'], output_column='solution') # Inference configuration math_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict( role='HUMAN', prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.', ), ] ), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) # Evaluation configuration math_eval_cfg = dict( evaluator=dict(type=MATHEvaluator), ) # Dataset configuration math_datasets = [ dict( type=CustomDataset, abbr='my-math-dataset', path='path/to/your/dataset.jsonl', # or .csv reader_cfg=math_reader_cfg, infer_cfg=math_infer_cfg, eval_cfg=math_eval_cfg, ) ] # Model configuration models = [ dict( type=TurboMindModelwithChatTemplate, abbr='your-model-name', path='your/model/path', # ... other model configurations ) ] # Output directory work_dir = './outputs/math_eval' ```