import os.path as osp import random from typing import Dict, List, Optional import mmengine from mmengine.config import ConfigDict from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.registry import ICL_PROMPT_TEMPLATES from opencompass.utils import build_dataset_from_cfg, build_model_from_cfg from opencompass.utils.logging import get_logger from opencompass.utils.text_postprocessors import first_number_postprocess from opencompass.utils.types import get_type_from_cfg def randomize_preds_and_record_references(predictions, references, random_order, seed=2680): random.seed(seed) list_of_preds = [[] for _ in range(len(predictions))] for i in range(len(predictions[0]['model_preds'])): preds = [[pred['model_preds'][i], pred['model_name']] for pred in predictions] if random_order: random.shuffle(preds) for j in range(len(preds)): list_of_preds[j].append(preds[j][0]) references[i][f'answer{j+1}'] = preds[j][1] return list_of_preds, references class LMEvaluator: """Evaluate output with language model. Args: prompt_template (ConfigDict): Prompt template configuration. Used to prompt the language model for scores. User can use two reserved keywords, ``{prediction}`` and ``{reference}``, referring to the prediction and optionally the reference answer. judge_cfg (ConfigDict): The config of language model as a judge. output_path (str): The path to prediction output. dataset_cfg (ConfigDict, optional): The config of the dataset to be evaluated. postprocessor (ConfigDict): The model prediction's postprocessor config. """ def __init__( self, prompt_template: ConfigDict, judge_cfg: ConfigDict, output_path: str, random_order: Optional[bool] = False, dataset_cfg: Optional[ConfigDict] = None, postprocessor: ConfigDict = dict(type=first_number_postprocess) ) -> None: self.output_path = output_path out_dir, out_name = osp.split(output_path) if not out_dir: out_dir = './' self.prompt_tmpl = ICL_PROMPT_TEMPLATES.build(prompt_template) max_out_len = judge_cfg.get('max_out_len', None) batch_size = judge_cfg.get('batch_size', None) model = build_model_from_cfg(model_cfg=judge_cfg) self.inferencer = GenInferencer(model, max_out_len=max_out_len, batch_size=batch_size, output_json_filepath=out_dir, output_json_filename=out_name) self.postprocessor = get_type_from_cfg(postprocessor) self.logger = get_logger() self.dataset_cfg = dataset_cfg self.random_order = random_order def score(self, predictions, references: Optional[List] = None) -> Dict: if type(predictions) == list: """Apply to multi-model comparison.""" references = [{} for _ in range(len(predictions[0]['model_preds'])) ] if references is None else references predictions, references = randomize_preds_and_record_references( predictions, references, self.random_order) elif type(predictions) == dict: """Apply to single-model scoring.""" references = [{} for _ in range(len(predictions[0]['model_preds'])) ] if references is None else references predictions = [predictions['model_preds']] pred_dict = {} for i in range(len(predictions)): key = 'prediction' if i == 0 else f'prediction{i + 1}' pred_dict[key] = predictions[i] if self.dataset_cfg: dataset = build_dataset_from_cfg(self.dataset_cfg) for k, v in pred_dict.items(): dataset.reader.dataset['test'] = dataset.test.add_column(k, v) dataset.reader.input_columns.append(k) if references: dataset.reader.input_columns.append('reference') dataset.reader.dataset['test'] = dataset.test.add_column( 'reference', references) else: # build a default dataset just for comparison from opencompass.datasets.lmeval import LMEvalDataset input_columns = list(pred_dict.keys()) if references: input_columns.append('reference') dataset = LMEvalDataset(reader_cfg=dict( input_columns=input_columns, output_column=None, train_split='test'), reference=references, **pred_dict) dataset.reader.output_column = 'reference' retriever = ZeroRetriever(dataset) self.inferencer.inference(retriever=retriever, prompt_template=self.prompt_tmpl) output = mmengine.load(self.output_path) return self.postprocess(output) def postprocess(self, output: Dict) -> Dict: """Postprocess output by adding necessary statistics or data into it.""" return output