from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset siqa_reader_cfg = dict( input_columns=['context', 'question', 'answerA', 'answerB', 'answerC'], output_column='label', test_split='validation') siqa_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 1: dict(round=[ dict(role='HUMAN', prompt="{context}\nQuestion: {question}\nAnswer:"), dict(role='BOT', prompt="{answerA}") ]), 2: dict(round=[ dict(role='HUMAN', prompt="{context}\nQuestion: {question}\nAnswer:"), dict(role='BOT', prompt="{answerB}") ]), 3: dict(round=[ dict(role='HUMAN', prompt="{context}\nQuestion: {question}\nAnswer:"), dict(role='BOT', prompt="{answerC}") ]), }), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer)) siqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) siqa_datasets = [ dict( abbr="siqa", type=HFDataset, path='social_i_qa', reader_cfg=siqa_reader_cfg, infer_cfg=siqa_infer_cfg, eval_cfg=siqa_eval_cfg) ]