from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GLMChoiceInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import CslDataset csl_reader_cfg = dict( input_columns=["abst", "keywords"], output_column='label') csl_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template={ 0: "摘要:", 1: "摘要:关键词:" }, column_token_map={ "abst": '', 'keywords': '' }, ice_token=''), prompt_template=dict( type=PromptTemplate, template= 'Abstract: \nKeyword: \n Does all keywords come from the given abstract? (Yes or No)', column_token_map={ "abst": '', 'keywords': '' }, ice_token=''), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GLMChoiceInferencer, choices=['No', 'Yes'])) csl_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) csl_datasets = [ dict( type=CslDataset, path='json', abbr='csl', data_files='./data/FewCLUE/csl/test_public.json', split='train', reader_cfg=csl_reader_cfg, infer_cfg=csl_infer_cfg, eval_cfg=csl_eval_cfg) ]