from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset CB_reader_cfg = dict( input_columns=["premise", "hypothesis"], output_column="label", ) CB_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ "contradiction": dict(round=[ dict( role="HUMAN", prompt= "{premise}\n{hypothesis}\nWhat is the relation between the two sentences?" ), dict(role="BOT", prompt="Contradiction"), ]), "entailment": dict(round=[ dict( role="HUMAN", prompt= "{premise}\n{hypothesis}\nWhat is the relation between the two sentences?" ), dict(role="BOT", prompt="Entailment"), ]), "neutral": dict(round=[ dict( role="HUMAN", prompt= "{premise}\n{hypothesis}\nWhat is the relation between the two sentences?" ), dict(role="BOT", prompt="Neutral"), ]), }, ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer), ) CB_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) CB_datasets = [ dict( type=HFDataset, abbr="CB", path="json", split="train", data_files="./data/SuperGLUE/CB/val.jsonl", reader_cfg=CB_reader_cfg, infer_cfg=CB_infer_cfg, eval_cfg=CB_eval_cfg, ) ]