from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset ocnli_reader_cfg = dict( input_columns=['sentence1', 'sentence2'], output_column='label') # TODO: two prompt templates for ocnli ocnli_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 'contradiction': dict(round=[ dict( role="HUMAN", prompt="语句一:“{sentence1}”\n语句二:“{sentence2}”\n请问这两句话是什么关系?" ), dict(role="BOT", prompt="矛盾") ]), 'entailment': dict(round=[ dict( role="HUMAN", prompt="语句一:“{sentence1}”\n语句二:“{sentence2}”\n请问这两句话是什么关系?" ), dict(role="BOT", prompt="蕴含") ]), 'neutral': dict(round=[ dict( role="HUMAN", prompt="语句一:“{sentence1}”\n语句二:“{sentence2}”\n请问这两句话是什么关系?" ), dict(role="BOT", prompt="无关") ]), }), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer)) ocnli_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) ocnli_datasets = [ dict( type=HFDataset, abbr='ocnli', path='json', split='train', data_files='./data/CLUE/OCNLI/dev.json', reader_cfg=ocnli_reader_cfg, infer_cfg=ocnli_infer_cfg, eval_cfg=ocnli_eval_cfg) ]