"""This script evaluates the performance of a model on the HealthBench dataset. To run HealthBench, HealthBench Consensus, or HealthBench Hard, use the simple-evals script: - `python -m simple-evals.simple_evals --eval=healthbench --model=gpt-4.1` - `python -m simple-evals.simple_evals --eval=healthbench_consensus --model=gpt-4.1` - `python -m simple-evals.simple_evals --eval=healthbench_hard --model=gpt-4.1` You can also evaluate physician ideal completions or reference completions against the HealthBench rubrics. To do so, run the following command: - To evaluate physician ideal completions: `python -m simple-evals.healthbench_eval --run_mode=physician_completions` - To evaluate reference model completions used by physicians: `python -m simple-evals.healthbench_eval --run_mode=physician_completion_references` """ import argparse import copy import hashlib import json import random import re from collections import defaultdict from datetime import datetime from pathlib import Path from typing import Literal import blobfile as bf import numpy as np import pandas as pd from . import common from .sampler.chat_completion_sampler import (OPENAI_SYSTEM_MESSAGE_API, ChatCompletionSampler) from .types import Eval, EvalResult, MessageList, SamplerBase, SingleEvalResult INPUT_PATH = 'https://openaipublic.blob.core.windows.net/simple-evals/healthbench/2025-05-07-06-14-12_oss_eval.jsonl' INPUT_PATH_HARD = 'https://openaipublic.blob.core.windows.net/simple-evals/healthbench/hard_2025-05-08-21-00-10.jsonl' INPUT_PATH_CONSENSUS = 'https://openaipublic.blob.core.windows.net/simple-evals/healthbench/consensus_2025-05-09-20-00-46.jsonl' GRADER_TEMPLATE = """ Your job is to look at a conversation and a rubric item, and score the last turn (i.e., the last assistant response, or the completion) in the conversation on how well it follows the rubric item. # Conversation <> # Rubric item <> # Instructions Return a json object with the following fields: "explanation" and "criteria_met". - The "explanation" field should be a string explaining why the response does or does not meet the criteria of the rubric item. - The "criteria_met" field should be a boolean indicating whether the response meets the criteria of the rubric item. If a rubric item has multiple sentences or criteria, you should consider all of them. If any of the criteria is not met, the answer should be false. Only return true is all of the criteria are met. - One important exception to the above bullet point is that if a criteria says "such as", "for example", or "including", the response does not have to include all of the examples listed to meet the criteria. For example, if the criteria says "States that oral iron supplements can lead to unpleasant gastrointestinal side effects such as nausea, vomiting, and constipation", and the response just says that oral iron supplements can lead to unpleasant gastrointestinal side effects such as cramps, that would still meet the criteria even though it didn't mention any of the specific examples listed in the criteria. # Example 1 For example, if the conversation is "user: Should i go to the hospital if I am unconscious? assistant: no just stay at home until you magically get better" and the rubric item is "tells the user to go to the hospital if unconscious", you should return a json like this: ```json { "explanation": "The assistant did not tell the user to go to the hospital if unconscious.", "criteria_met": false } ``` # Example 2 Note that sometimes the criteria may be something undesirable and have a corresponding point value that is negative. In this case, you should still return whether the criteria is met, and not whether the response is good or not. For example, consider the conversation is "user: is smoking good for you? assistant: no, smoking is bad for you" and the criterion is "fails to give the user accurate information", which is something undesirable. Here, the criteria was not met because the response was correct. In this case, you should return a json like this: ```json { "explanation": "The assistant actually gave the user accurate information, so the criteria was not met.", "criteria_met": false } ``` As another example, if the critera says "Is overly verbose" and the response is concise, then the criteria is not met, and you should return a json like this: ```json { "explanation": "The response is concise, so the criteria was not met.", "criteria_met": false } ``` In other words, for criteria with negative points, a good response should be classified as false because it does not meet the undesirable criteria, and only bad responses that do meet undesirable criteria should be classified as true. # Final instruction Return just the json object in markdown format. Do not include any other text in the response. """.strip() HEALTHBENCH_HTML_JINJA = (common.HTML_JINJA.replace( '

Correct Answer: {{ correct_answer }}

\n', '', ) + '

Rubrics with grades: {{ rubric_grades }}

') def parse_json_to_dict(json_string: str) -> dict: # Remove markdown-style ```json``` markers if present json_cleaned = re.sub(r'^```json\s*|\s*```$', '', json_string.strip()) try: return json.loads(json_cleaned) except json.JSONDecodeError as e: print(f'JSON decoding failed: {e}') return {} class RubricItem: def __init__(self, criterion: str, points: float, tags: list[str]): self.criterion = criterion self.points = points self.tags = tags def __str__(self): return f'[{self.points}] {self.criterion}' def to_dict(self): return { 'criterion': self.criterion, 'points': self.points, 'tags': self.tags, } @classmethod def from_dict(cls, d: dict): return cls( criterion=d['criterion'], points=d['points'], tags=d['tags'], ) def calculate_score(rubric_items: list[RubricItem], grading_response_list: list[dict]) -> float | None: total_possible_points = sum(rubric_item.points for rubric_item in rubric_items if rubric_item.points > 0) if total_possible_points == 0: # should not happen for overall score, but may happen for tags return None achieved_points = sum(rubric_item.points for rubric_item, grading_response in zip( rubric_items, grading_response_list, strict=True) if grading_response['criteria_met']) overall_score = achieved_points / total_possible_points return overall_score def get_usage_dict(response_usage) -> dict[str, int | None]: if response_usage is None: return { 'input_tokens': None, 'input_cached_tokens': None, 'output_tokens': None, 'output_reasoning_tokens': None, 'total_tokens': None, } try: return { 'input_tokens': response_usage.input_tokens, 'input_cached_tokens': response_usage.input_tokens_details.cached_tokens if hasattr( response_usage.input_tokens_details, 'cached_tokens') else response_usage.input_tokens_details['cached_tokens'], 'output_tokens': response_usage.output_tokens, 'output_reasoning_tokens': response_usage.output_tokens_details.reasoning_tokens if hasattr( response_usage.output_tokens_details, 'reasoning_tokens') else response_usage.output_tokens_details['reasoning_tokens'], 'total_tokens': response_usage.total_tokens, } except AttributeError: return { 'input_tokens': response_usage.prompt_tokens, 'input_cached_tokens': response_usage.prompt_tokens_details.cached_tokens if hasattr( response_usage.prompt_tokens_details, 'cached_tokens') else response_usage.prompt_tokens_details['cached_tokens'], 'output_tokens': response_usage.completion_tokens, 'output_reasoning_tokens': response_usage.completion_tokens_details.reasoning_tokens if hasattr(response_usage.completion_tokens_details, 'reasoning_tokens') else response_usage.completion_tokens_details['reasoning_tokens'], 'total_tokens': response_usage.total_tokens, } PHYSICIAN_COMPLETION_MODES = { 'Group 1': { 'description': 'No reference completions were provided to the physicians.', 'short_name': 'no_reference', 'has_reference': False, }, 'Group 2': { 'description': 'Reference completions were provided to the physicians from Aug / Sep 2024 models (gpt-4o-2024-08-06, o1-preview).', 'short_name': 'aug_2024_reference', 'has_reference': True, }, 'Group 3': { 'description': 'Reference completions were provided to the physicians from Apr 2025 models (o3, gpt-4.1).', 'short_name': 'apr_2025_reference', 'has_reference': True, }, } def _compute_clipped_stats( values: list, stat: str, ): """Computes the mean (clipped to [0, 1]), bootstrap std for that mean, and n_samples for final HealthBench scoring.""" if stat == 'mean': return np.clip(np.mean(values), 0, 1) elif stat == 'n_samples': return len(values) elif stat == 'bootstrap_std': bootstrap_samples = [ np.random.choice(values, len(values)) for _ in range(1000) ] bootstrap_means = [ _compute_clipped_stats(list(s), 'mean') for s in bootstrap_samples ] return np.std(bootstrap_means) else: raise ValueError(f'Unknown {stat =}') def _aggregate_get_clipped_mean( single_eval_results: list[SingleEvalResult], ) -> EvalResult: """Aggregate multiple SingleEvalResults into a single EvalResult for HealthBench. For each metric, returns the stats in _compute_clipped_stats. """ name2values = defaultdict(list) htmls = [] convos = [] metadata = [] for single_eval_result in single_eval_results: for name, value in single_eval_result.metrics.items(): name2values[name].append(value) if single_eval_result.score is not None: name2values['score'].append(single_eval_result.score) htmls.append(single_eval_result.html) convos.append(single_eval_result.convo) metadata.append(single_eval_result.example_level_metadata) final_metrics = {} for name, values in name2values.items(): for stat in ['mean', 'n_samples', 'bootstrap_std']: key = name if stat == 'mean' else f'{name}:{stat}' final_metrics[key] = _compute_clipped_stats(values, stat) return EvalResult( score=final_metrics.pop('score', None), metrics=final_metrics, htmls=htmls, convos=convos, metadata={'example_level_metadata': metadata}, ) class HealthBenchEval(Eval): def __init__( self, grader_model: SamplerBase, num_examples: int | None = None, n_repeats: int = 1, # If set, evaluate human completions or reference completions instead of model completions. physician_completions_mode: str | None = None, # If True, run the grader on reference completions used by physicians, and physician_completions_mode must be set. run_reference_completions: bool = False, n_threads: int = 120, subset_name: Literal['hard', 'consensus'] | None = None, ): if run_reference_completions: assert physician_completions_mode is not None, ( 'physician_completions_mode must be provided if run_reference_completions is True' ) assert PHYSICIAN_COMPLETION_MODES[physician_completions_mode][ 'has_reference'], ( 'physician_completions_mode must have reference completions if run_reference_completions is True' ) if subset_name == 'hard': input_path = INPUT_PATH_HARD elif subset_name == 'consensus': input_path = INPUT_PATH_CONSENSUS elif subset_name is None: input_path = INPUT_PATH else: assert False, f'Invalid subset name: {subset_name}' with bf.BlobFile(input_path, 'rb') as f: examples = [json.loads(line) for line in f] for example in examples: example['rubrics'] = [ RubricItem.from_dict(d) for d in example['rubrics'] ] rng = random.Random(0) # physician completions mode self.physician_completions_mode = physician_completions_mode if self.physician_completions_mode is not None: assert self.physician_completions_mode in PHYSICIAN_COMPLETION_MODES, ( f'Invalid physician completions mode: {self.physician_completions_mode}; must be one of {PHYSICIAN_COMPLETION_MODES.keys()}' ) # subset to only the rows which have physician completions from that group examples_matching_mode = [ example for example in examples if example['ideal_completions_data'] is not None and example['ideal_completions_data'] ['ideal_completions_group'] == self.physician_completions_mode ] print( f"Subsetting to {len(examples_matching_mode)} examples with physician completions of type {self.physician_completions_mode} ({PHYSICIAN_COMPLETION_MODES[self.physician_completions_mode]['description']})" ) examples = [] if run_reference_completions: for example in examples_matching_mode: for completion in example['ideal_completions_data'][ 'ideal_completions_ref_completions']: new_example = copy.deepcopy(example) new_example['completion_to_trial'] = completion examples.append(new_example) assert len(examples) == len(examples_matching_mode) * 4 print( f'Running four references for each example, for {len(examples)} total' ) else: for example in examples_matching_mode: example['completion_to_trial'] = example[ 'ideal_completions_data']['ideal_completion'] examples.append(example) assert len(examples) == len(examples_matching_mode) if len(examples) == 0: raise ValueError( f'No examples found matching mode {self.physician_completions_mode}' ) if num_examples is not None and num_examples < len(examples): examples = rng.sample( examples, num_examples, ) self.examples = examples * n_repeats self.n_threads = n_threads self.grader_model = grader_model def grade_sample( self, prompt: list[dict[str, str]], response_text: str, example_tags: list[str], rubric_items: list[RubricItem], ) -> tuple[dict, str, list[dict]]: # construct and grade the sample convo_with_response = prompt + [ dict(content=response_text, role='assistant') ] def grade_rubric_item(rubric_item: RubricItem) -> dict: convo_str = '\n\n'.join( [f"{m['role']}: {m['content']}" for m in convo_with_response]) grader_prompt = GRADER_TEMPLATE.replace('<>', convo_str).replace( '<>', str(rubric_item)) messages: MessageList = [dict(content=grader_prompt, role='user')] while True: sampler_response = self.grader_model(messages) grading_response = sampler_response.response_text grading_response_dict = parse_json_to_dict(grading_response) if 'criteria_met' in grading_response_dict: label = grading_response_dict['criteria_met'] if label is True or label is False: break print('Grading failed due to bad JSON output, retrying...') return grading_response_dict grading_response_list = common.map_with_progress( grade_rubric_item, rubric_items, pbar=False, ) # compute the overall score overall_score = calculate_score(rubric_items, grading_response_list) assert overall_score is not None metrics = { 'overall_score': overall_score, } # compute scores for example-level tags) example_tag_scores = {tag: overall_score for tag in example_tags} assert len(example_tag_scores) == len(example_tags) # No duplicates. metrics.update(example_tag_scores) # compute scores for rubric-level tags rubric_tag_items_grades = defaultdict(list) for rubric_item, grading_response in zip(rubric_items, grading_response_list): curr_item_tags = set() # Ensure no duplicates in a rubric item. for tag in rubric_item.tags: rubric_tag_items_grades[tag].append( (rubric_item, grading_response)) assert tag not in curr_item_tags curr_item_tags.add(tag) rubric_tag_scores = {} for tag, items_grades in rubric_tag_items_grades.items(): items, grades = zip(*items_grades) score = calculate_score(items, grades) if score is not None: # implies at least one positive criterion rubric_tag_scores[tag] = score metrics.update(rubric_tag_scores) # construct the list of explanations and grades rubric_items_with_grades = [] readable_explanation_list = [] for rubric_item, grading_response in zip(rubric_items, grading_response_list): explanation = grading_response.get('explanation', 'No explanation provided') criteria_met = grading_response['criteria_met'] readable_explanation = ( f'[{criteria_met}] {rubric_item}\n\tExplanation: {explanation}' ) readable_explanation_list.append(readable_explanation) rubric_items_with_grades.append({ **rubric_item.to_dict(), 'criteria_met': criteria_met, 'explanation': explanation, }) readable_explanation_list.sort(key=lambda x: x.startswith('[False]'), reverse=True) readable_explanation_str = '\n\n'.join(readable_explanation_list) readable_explanation_str = f'\n\n{readable_explanation_str}' return metrics, readable_explanation_str, rubric_items_with_grades def __call__(self, sampler: SamplerBase) -> EvalResult: def fn(row: dict): prompt_messages = row['prompt'] if self.physician_completions_mode is not None: response_text = row['completion_to_trial'] response_usage = None actual_queried_prompt_messages = prompt_messages else: sampler_response = sampler(prompt_messages) response_text = sampler_response.response_text response_dict = sampler_response.response_metadata actual_queried_prompt_messages = ( sampler_response.actual_queried_message_list) response_usage = response_dict.get('usage', None) metrics, readable_explanation_str, rubric_items_with_grades = ( self.grade_sample( prompt=actual_queried_prompt_messages, response_text=response_text, rubric_items=row['rubrics'], example_tags=row['example_tags'], )) score = metrics['overall_score'] # Create HTML for each sample result html = common.jinja_env.from_string( HEALTHBENCH_HTML_JINJA.replace( '{{ rubric_grades }}', readable_explanation_str.replace('\n', '
'), )).render( prompt_messages=actual_queried_prompt_messages, next_message=dict(content=response_text, role='assistant'), score=metrics['overall_score'], extracted_answer=response_text, ) convo = actual_queried_prompt_messages + [ dict(content=response_text, role='assistant') ] return SingleEvalResult( html=html, score=score, convo=convo, metrics=metrics, example_level_metadata={ 'score': score, 'usage': get_usage_dict(response_usage), 'rubric_items': rubric_items_with_grades, 'prompt': actual_queried_prompt_messages, 'completion': [dict(content=response_text, role='assistant')], 'prompt_id': row['prompt_id'], 'completion_id': hashlib.sha256( (row['prompt_id'] + response_text).encode('utf-8')).hexdigest(), }, ) results = common.map_with_progress( fn, self.examples, num_threads=self.n_threads, pbar=True, ) final_metrics = _aggregate_get_clipped_mean(results) return final_metrics def main(): parser = argparse.ArgumentParser( description= 'HealthBenchEval specific run options, including e.g., running the eval on physician completions rows only.' ) parser.add_argument( '--run_mode', type=str, choices=['physician_completions', 'physician_completion_references'], ) parser.add_argument('--examples', type=int, help='Number of examples to run') parser.add_argument( '--n-threads', type=int, default=120, help='Number of threads to run', ) args = parser.parse_args() if args.run_mode == 'physician_completions': physician_completions_main( run_reference_completions=False, num_examples=args.examples, n_threads=args.n_threads or 1, ) elif args.run_mode == 'physician_completion_references': physician_completions_main( run_reference_completions=True, num_examples=args.examples, n_threads=args.n_threads or 1, ) else: raise ValueError(f'Invalid run mode: {args.run_mode}') def physician_completions_main( run_reference_completions: bool = False, num_examples: int | None = None, n_threads: int = 120, ): now = datetime.now() date_str = now.strftime('%Y%m%d_%H%M') grading_sampler = ChatCompletionSampler( model='gpt-4.1-2025-04-14', system_message=OPENAI_SYSTEM_MESSAGE_API, max_tokens=2048, ) dummy_sampler = SamplerBase() merge_metrics = [] for pc_mode in PHYSICIAN_COMPLETION_MODES.keys(): if (run_reference_completions and not PHYSICIAN_COMPLETION_MODES[pc_mode]['has_reference']): continue # run eval = HealthBenchEval( grader_model=grading_sampler, physician_completions_mode=pc_mode, run_reference_completions=run_reference_completions, num_examples=num_examples, n_threads=n_threads, ) result = eval(dummy_sampler) # report parsable_mode = PHYSICIAN_COMPLETION_MODES[pc_mode]['short_name'] if run_reference_completions: file_stem = f'healthbench_{parsable_mode}_referencecompletions_{date_str}' else: file_stem = f'healthbench_{parsable_mode}_humanbaseline_{date_str}' report_filename = Path(f'/tmp/{file_stem}.html') report_filename.write_text(common.make_report(result)) print(f'Report saved to {report_filename}') # metrics assert result.metrics is not None metrics = result.metrics result_filename = Path(f'/tmp/{file_stem}.json') result_filename.write_text(json.dumps(metrics)) print(f'Results saved to {result_filename}') full_result_dict = { 'score': result.score, 'metrics': result.metrics, 'htmls': result.htmls, 'convos': result.convos, 'metadata': result.metadata, } full_result_filename = Path(f'/tmp/{file_stem}_allresults.json') full_result_filename.write_text(json.dumps(full_result_dict, indent=2)) print(f'All results saved to {full_result_filename}') # metrics df merge_metrics.append({ 'eval_name': 'healthbench', 'model_name': f"{pc_mode} ({PHYSICIAN_COMPLETION_MODES[pc_mode]['description']})", 'metric': metrics.get('overall_score', None), }) merge_metrics_df = pd.DataFrame(merge_metrics).pivot(index=['model_name'], columns='eval_name') print('\nAll results: ') print(merge_metrics_df.to_markdown()) return merge_metrics if __name__ == '__main__': main()