# flake8: noqa: E501 import csv import os import os.path as osp import re from collections import defaultdict from datetime import datetime import numpy as np from mmengine import ConfigDict from tabulate import tabulate try: from prettytable import from_csv except ImportError: from_csv = None from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg from .compass_arena import CompassArenaSummarizer from .utils import get_judgeanswer_and_reference, get_outdir # from .utils.writer import Writer def post_process_fofo(judgement: str): """Input a string like below: xxx[[5]]xxx, and extract the score """ match = re.search(r"[\"']format_correctness[\"']:\s*([0-1]+)", judgement) if match: score = int(match.group(1)) else: return None return {'score': score, 'judgement': judgement} class FofoSummarizer: """Do the subjectivity analyze based on evaluation results. Args: config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime. """ def __init__(self, config: ConfigDict, judge_type='single') -> None: self.tasks = [] self.cfg = config self.eval_model_cfgs = self.cfg['eval']['partitioner']['models'] self.eval_model_abbrs = [ model_abbr_from_cfg(model) for model in self.eval_model_cfgs ] self.judge_models = self.cfg.get('judge_models', None) self.judge_function = post_process_fofo def get_score(self, time_str): output_dir, results_folder = get_outdir(self.cfg, time_str) total_scores = {} for idx, judge_model_cfg in enumerate(self.judge_models): judge_model = model_abbr_from_cfg(judge_model_cfg) for dataset in self.cfg['datasets']: dataset_abbr = dataset_abbr_from_cfg(dataset) for eval_model_abbr in self.eval_model_abbrs: subdir = eval_model_abbr + '_judged-by--' + judge_model subdir_path = os.path.join(results_folder, subdir) if os.path.isdir(subdir_path): judged_answers, references = get_judgeanswer_and_reference( dataset, subdir_path, self.judge_function) scores = defaultdict(list) for ans, ref in zip(judged_answers, references): domain = ref['domain'] format_name = ref['format'] format_type = ref['format_type'] score = ans['score'] if score is not None: scores['overall'].append(score) scores[domain].append(score) if format_type == 'general': scores[format_name].append(score) if len(judged_answers) == 0: single_model_scores = {} else: single_model_scores = { task: sum(score) / len(score) for task, score in scores.items() } if judge_model not in total_scores: total_scores[judge_model] = {} if dataset_abbr not in total_scores[judge_model]: total_scores[judge_model][dataset_abbr] = {} total_scores[judge_model][dataset_abbr][ eval_model_abbr] = single_model_scores else: print(subdir_path + ' is not exist! please check!') return total_scores def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): """Summarize the subjectivity analysis based on evaluation results. Args: time_str (str): Timestamp for file naming. Returns: pd.DataFrame: The summary results. """ all_scores = {} scores = self.get_score(time_str) output_dir, results_folder = get_outdir(self.cfg, time_str) for idx, judge_model in enumerate(self.judge_models): judge_abbr = model_abbr_from_cfg(judge_model) score_by_judgemodel = {} score_saver = {} for dataset in self.cfg['datasets']: dataset_abbr = dataset_abbr_from_cfg(dataset) summarizer_model_abbrs = self.eval_model_abbrs one_column = list(scores[judge_abbr][dataset_abbr].values())[0] format_types = ['Json', 'CSV', 'XML', 'YAML', 'Markdown'] row_headers = [ i for i in one_column.keys() if i not in [dataset_abbr] + format_types + ['overall'] ] row_headers = ['overall'] + format_types + row_headers headers = [dataset_abbr] + summarizer_model_abbrs table = [] for row_header in row_headers: row = [row_header] for model_abbr in summarizer_model_abbrs: s = scores[judge_abbr][dataset_abbr][model_abbr].get( row_header, '') if isinstance(s, float): s = f'{s:.2f}' if isinstance(s, int): s = str(s) row.append(s) table.append(row) txt = tabulate(table, headers=headers) score_saver[dataset_abbr] = [s for s in table[0][1:]] if idx == len(self.judge_models): output_filename = osp.join( output_dir, dataset_abbr + '-summarized-by--' + judge_abbr + '-' + '-report.csv') else: output_filename = osp.join( output_dir, dataset_abbr + '-judged-by--' + judge_abbr + '-' + '-report.csv') with open(output_filename, 'w') as f: f.write(','.join(headers) + '\n') for line in table: f.write(','.join(line) + '\n') for idx, model in enumerate(summarizer_model_abbrs): score_by_judgemodel[model] = {} for subset_name, subset_scores in score_saver.items(): score_by_judgemodel[model][subset_name] = subset_scores[ idx] all_scores[judge_abbr] = score_by_judgemodel return {'Fofo': all_scores}