base_prompt_dict = {"basic":"""You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Answer (Yes or No ?):""", "basic-CN":"""给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别? 答案(是或否?):""", "adversarial-ignore":"""You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Answer (Yes or No ?):""", "adversarial-ignore-CN":"""给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别? 答案(是或否?):""", "adversarial-doubt":"""You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Answer (Yes or No ?):""", "adversarial-doubt-CN":"""给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别? 答案(是或否?):""", "zero-shot-IcL":"""Determine whether the causal effect can be identified given two variables on a causal graph. You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Answer (Yes or No ?):""", "zero-shot-IcL-CN":"""确定在因果图中给定两个变量的情况下,因果效应是否可以被识别。 给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别? 答案(是或否?):""", "one-shot-IcL":"""Determine whether the causal effect can be identified given two variables on a causal graph. You will be presented with a causal graph in the following form: A causes E, A causes C, A causes B, B causes D, B causes E, and D causes E. There exist unobserved confounders between: B and E. Question: Whether the causal effect of B on E is identified or not? Answer (Yes or No ?): No You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Answer (Yes or No ?):""", "one-shot-IcL-CN":"""确定在因果图中给定两个变量的情况下,因果效应是否可以被识别。 给定如下因果图:A导致E, A导致C, A导致B, B导致D, B导致E, 以及D导致E。 在这些变量间存在着不可观察的混淆变量:B和E。 问题:B对E的因果效应是否可以被识别? 答案(是或否?):否 给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别? 答案(是或否?):""", "three-shot-IcL":"""Determine whether the causal effect can be identified given two variables on a causal graph. You will be presented with a causal graph in the following form: A causes E, A causes C, A causes B, B causes D, B causes E, and D causes E. There exist unobserved confounders between: B and E. Question: Whether the causal effect of B on E is identified or not? Answer (Yes or No ?): No You will be presented with a causal graph in the following form: A causes D, A causes E, B causes E, C causes D, and D causes E. There exist unobserved confounders between: C and D, and A and E. Question: Whether the causal effect of C on D is identified or not? Answer (Yes or No ?): No You will be presented with a causal graph in the following form: A causes D, A causes C, A causes B, B causes E, B causes D, and C causes D. There exist unobserved confounders between: B and D, C and D, and A and B. Question: Whether the causal effect of D on C is identified or not? Answer (Yes or No ?): Yes You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Answer (Yes or No ?):""", "three-shot-IcL-CN":"""确定在因果图中给定两个变量的情况下,因果效应是否可以被识别。 给定如下因果图:A导致E, A导致C, A导致B, B导致D, B导致E, 以及D导致E。 在这些变量间存在着不可观察的混淆变量:B和E。 问题:B对E的因果效应是否可以被识别? 答案(是或否?):否 给定如下因果图:A导致D, A导致E, B导致E, C导致D, 以及D导致E。 在这些变量间存在着不可观察的混淆变量:C和D, 以及A和E。 问题:C对D的因果效应是否可以被识别? 答案(是或否?):否 给定如下因果图:A导致D, A导致C, A导致B, B导致E, B导致D, 以及C导致D。 在这些变量间存在着不可观察的混淆变量:B和D, C和D, 以及A和B。 问题:D对C的因果效应是否可以被识别? 答案(是或否?):是 给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别? 答案(是或否?):""", "zero-shot-CoT":"""You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Let's think step by step. Answer (Yes or No ?):""" , "zero-shot-CoT-CN":"""给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别?请逐步思考。 答案(是或否?):""" , "manual-CoT":"""Here are three examples of causal effect identification using chain of thought, and a question to answer. You will be presented with a causal graph in the following form: A causes E, A causes D, B causes D, B causes E, C causes E, and D causes E. There exist unobserved confounders between: B and D. Question: Whether the causal effect of B on E is identified or not? Answer (Yes or No ?): The unobserved confounders between B and D suggests there might be a causal path from the confounder to B. Therefore, there may be an unblocked back-door path from B to E, making the causal effect of B on E not identified. Therefore, the answer is No. You will be presented with a causal graph in the following form: A causes B, B causes C, B causes D, and D causes E. There exist unobserved confounders between: . Question: Whether the causal effect of A on B is identified or not? Answer (Yes or No ?): There are no unobserved confounders, and there is no unblocked back-door path from A to B, so the causal effect of A on B can be identified. Therefore, the answer is Yes. You will be presented with a causal graph in the following form: A causes D, A causes C, B causes D, B causes E, and C causes D. There exist unobserved confounders between: B and D, and C and D. Question: Whether the causal effect of A on B is identified or not? Answer (Yes or No ?): There are no unobserved confounders between A and B, and there is no unblocked back-door path from A to B, so the causal effect of A on B can be identified. Therefore, the answer is Yes. You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Answer (Yes or No ?): """, "manual-CoT-CN":"""如下为两个使用思维链进行推理的判断因果效应可否识别的示例,和一个需要回答的问题。 给定如下因果图:A导致E, A导致D, B导致D, B导致E, C导致E, 以及D导致E。 在这些变量间存在着不可观察的混淆变量:B和D。 问题:B对E的因果效应是否可以被识别? 答案(是或否?):B和D之间存在不可观察的混淆变量说明可能存在从混淆变量指向B的因果路径。因此B到E可能存在无法被阻断的后门路径,导致B对E的因果效应不可被识别。因此答案为“否”。 给定如下因果图:A导致B, B导致C, B导致D, 以及D导致E。 在这些变量间存在着不可观察的混淆变量:。 问题:A对B的因果效应是否可以被识别? 答案(是或否?):不存在不可观察的混淆变量,A到B不存在无法被阻断的后门路径,所以A对B的因果效应可以被识别。因此答案为“是”。 给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别? 答案(是或否?): """, "explicit-function":"""You are a helpful assistant for causality identification. You will be presented with a causal graph in the following form: %s. There exist unobserved confounders between: %s. Question: Whether the causal effect of %s on %s is identified or not? Answer (Yes or No ?):""", "explicit-function-CN":"""你是一个用于因果识别的得力助手。 给定如下因果图:%s。 在这些变量间存在着不可观察的混淆变量:%s。 问题:%s对%s的因果效应是否可以被识别? 答案(是或否?):""", } def get_prompt(task_name, prompt_style, item, prompt_style_str=""): base = base_prompt_dict[prompt_style] prompt = prompt_style_str + base % (item["di_edges"], item["bi_edges"], item["treatment"], item["outcome"]) return prompt