from mmengine.config import read_base with read_base(): from opencompass.configs.datasets.subjective.alpaca_eval.alpacav2_judgeby_gpt4 import subjective_datasets as alpacav2 from opencompass.models import (HuggingFace, HuggingFaceCausalLM, HuggingFaceChatGLM3) from opencompass.models.openai_api import OpenAI from opencompass.partitioners import NaivePartitioner, SizePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.partitioners.sub_size import SubjectiveSizePartitioner from opencompass.runners import LocalRunner, SlurmSequentialRunner from opencompass.summarizers import AlpacaSummarizer from opencompass.tasks import OpenICLInferTask from opencompass.tasks.outer_eval.alpacaeval import AlpacaEvalTask api_meta_template = dict( round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ], reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')], ) # To run this config, please ensure to successfully installed `alpaca-eval==0.6` and `scikit-learn==1.5` # -------------Inference Stage ---------------------------------------- # For subjective evaluation, we often set do sample for models models = [ dict( type=HuggingFaceChatGLM3, abbr='chatglm3-6b', path='THUDM/chatglm3-6b', tokenizer_path='THUDM/chatglm3-6b', model_kwargs=dict( device_map='auto', trust_remote_code=True, ), tokenizer_kwargs=dict( padding_side='left', truncation_side='left', trust_remote_code=True, ), generation_kwargs=dict(do_sample=True, ), meta_template=api_meta_template, max_out_len=2048, max_seq_len=4096, batch_size=1, run_cfg=dict(num_gpus=1, num_procs=1), ) ] datasets = [*alpacav2] # -------------Evalation Stage ---------------------------------------- ## ------------- JudgeLLM Configuration gpt4_judge = dict( abbr='GPT4-Turbo', path='gpt-4-1106-preview', key= '', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well config='weighted_alpaca_eval_gpt4_turbo') ## ------------- Evaluation Configuration eval = dict(partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalRunner, max_num_workers=256, task=dict(type=AlpacaEvalTask, judge_cfg=gpt4_judge), )) work_dir = 'outputs/alpaca/'