from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.utils.text_postprocessors import first_option_postprocess from opencompass.datasets import InfiniteBenchcoderunDataset InfiniteBench_coderun_reader_cfg = dict( input_columns=['context', 'func', 'func_call'], output_column='answer', ) InfiniteBench_coderun_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are a helpful assistant.'), ], round=[ dict(role='HUMAN', prompt='Following is a set of Python functions. There is a function called named {func}.\n\n{context}\n\nPlease give me the exact number of the return value of {func_call}. Be concise. Your response must end with the final returned value.'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=5) ) InfiniteBench_coderun_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'), pred_role='BOT' ) InfiniteBench_coderun_datasets = [ dict( type=InfiniteBenchcoderunDataset, abbr='InfiniteBench_coderun', path='./data/InfiniteBench/code_run.jsonl', reader_cfg=InfiniteBench_coderun_reader_cfg, infer_cfg=InfiniteBench_coderun_infer_cfg, eval_cfg=InfiniteBench_coderun_eval_cfg) ]