from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import XiezhiDataset, XiezhiRetriever from opencompass.utils.text_postprocessors import first_capital_postprocess xiezhi_datasets = [] for split in ['spec_eng', 'spec_chn', 'inter_eng', 'inter_chn']: if 'chn' in split: q_hint, a_hint = '题目', '答案' else: q_hint, a_hint = 'Question', 'Answer' xiezhi_reader_cfg = dict( input_columns=['question', 'A', 'B', 'C', 'D', 'labels'], output_column='answer', train_split='train', test_split='test', ) xiezhi_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template=dict( begin='', round=[ dict(role='HUMAN', prompt=f'{q_hint}: {{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n{a_hint}: '), dict(role='BOT', prompt='{answer}'), ] ), ice_token='', ), retriever=dict(type=XiezhiRetriever, ice_num=3), inferencer=dict(type=GenInferencer), ) xiezhi_eval_cfg = dict(evaluator=dict(type=AccEvaluator), pred_role='BOT', pred_postprocessor=dict(type=first_capital_postprocess)) xiezhi_datasets.append( dict( type=XiezhiDataset, abbr=f'xiezhi-{split}', path='./data/xiezhi/', name='xiezhi_' + split, reader_cfg=xiezhi_reader_cfg, infer_cfg=xiezhi_infer_cfg, eval_cfg=xiezhi_eval_cfg, ))