from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import LMEvaluator from opencompass.datasets import Creationv01Dataset from mmengine.config import read_base subjective_reader_cfg = dict( input_columns=['question', 'prefix', 'suffix'], output_column='judge', ) subjective_all_sets = [ 'creation_v0.1', ] subjective_datasets = [] for _name in subjective_all_sets: subjective_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt='{question}' ), ]), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=2048), ) subjective_eval_cfg = dict( evaluator=dict( type=LMEvaluator, prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt = '{prefix}问题: <问题开始> {question} <问题结束>\n\n回答: <回答开始> {prediction} <回答结束>\n\n{suffix}' ), ]), ), ), pred_role='BOT', ) subjective_datasets.append( dict( abbr=f'{_name}', type=Creationv01Dataset, path='./data/subjective/', name=_name, reader_cfg=subjective_reader_cfg, infer_cfg=subjective_infer_cfg, eval_cfg=subjective_eval_cfg ))