from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import LongBenchRougeEvaluator, LongBenchqmsumDataset LongBench_qmsum_reader_cfg = dict( input_columns=['context', 'input'], output_column='answers', train_split='test', test_split='test' ) LongBench_qmsum_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{context}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {input}\nAnswer:'), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512) ) LongBench_qmsum_eval_cfg = dict( evaluator=dict(type=LongBenchRougeEvaluator), pred_role='BOT' ) LongBench_qmsum_datasets = [ dict( type=LongBenchqmsumDataset, abbr='LongBench_qmsum', path='THUDM/LongBench', name='qmsum', reader_cfg=LongBench_qmsum_reader_cfg, infer_cfg=LongBench_qmsum_infer_cfg, eval_cfg=LongBench_qmsum_eval_cfg) ]