from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator, SquadEvaluator, AccEvaluator from opencompass.datasets.leval import LEvalQualityDataset from opencompass.utils.text_postprocessors import first_capital_postprocess, first_capital_postprocess_multi LEval_quality_reader_cfg = dict( input_columns=['context', 'question'], output_column='answer', train_split='test', test_split='test' ) LEval_quality_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='Now you are given a very long document. Please follow the instruction based on this document. For multi-choice questions, there could be a single correct option or multiple correct options. Please only provide the letter corresponding to the answer (like A or AB) when answering.'), ], round=[ dict(role='HUMAN', prompt='Document is as follows.\n{context}\nQuestion:{question}\nAnswer:'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=10) ) LEval_quality_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=first_capital_postprocess), pred_role='BOT' ) LEval_quality_datasets = [ dict( type=LEvalQualityDataset, abbr='LEval_quality', path='L4NLP/LEval', name='quality', reader_cfg=LEval_quality_reader_cfg, infer_cfg=LEval_quality_infer_cfg, eval_cfg=LEval_quality_eval_cfg) ]