from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator, SquadEvaluator from opencompass.datasets.leval import LEvalGPTEvaluator, LEvalPatentSummDataset LEval_patent_summ_reader_cfg = dict( input_columns=['context', 'question', 'length'], output_column='answer', train_split='test', test_split='test' ) LEval_patent_summ_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='Now you are given a very long document. Please follow the instruction after this document. These instructions may include summarizing a document, answering questions based on the document, or writing a required paragraph.'), ], round=[ dict(role='HUMAN', prompt='Document is as follows. {context}\nInstruction: {question}\nAnswer this question with {length} words.'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512) ) LEval_patent_summ_eval_cfg = dict( evaluator=dict(type=RougeEvaluator), pred_role='BOT' ) LEval_patent_summ_datasets = [ dict( type=LEvalPatentSummDataset, abbr='LEval_patent_summ', path='L4NLP/LEval', name='patent_summ', reader_cfg=LEval_patent_summ_reader_cfg, infer_cfg=LEval_patent_summ_infer_cfg, eval_cfg=LEval_patent_summ_eval_cfg) ]