from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import InfiniteBenchzhqaDataset, LongBenchF1Evaluator from opencompass.utils.text_postprocessors import general_cn_postprocess InfiniteBench_zhqa_reader_cfg = dict( input_columns=['context', 'question'], output_column='answer', ) InfiniteBench_zhqa_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are a helpful assistant.'), ], round=[ dict(role='HUMAN', prompt='请根据以下书籍回答我的问题。\n\n{context}\n\n问题:{question}\n请尽量简短地回答。'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=40) ) InfiniteBench_zhqa_eval_cfg = dict( evaluator=dict(type=LongBenchF1Evaluator, language='zh'), pred_role='BOT', ) InfiniteBench_zhqa_datasets = [ dict( type=InfiniteBenchzhqaDataset, abbr='InfiniteBench_zhqa', path='./data/InfiniteBench/longbook_qa_chn.jsonl', reader_cfg=InfiniteBench_zhqa_reader_cfg, infer_cfg=InfiniteBench_zhqa_infer_cfg, eval_cfg=InfiniteBench_zhqa_eval_cfg) ]