from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import InfiniteBenchendiaDataset, InfiniteBenchendiaEvaluator InfiniteBench_endia_reader_cfg = dict( input_columns=['context', 'question'], output_column='answer', ) InfiniteBench_endia_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are a helpful assistant.'), ], round=[ dict(role='HUMAN', prompt='Below is a dialogue script where one random occurrence of a character name is replaced with \"$$MASK$$\", and you should try to guess who that character is.\n\nThe dialogue:\n\n---\n\n{context}\n\n---\n\nEnd of dialogue.\n\nWhich character is most likely \"$$MASK$$\"? Just say the name used by the scriptwriter (before the colon marks) of one single character and nothing else.'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=40) ) InfiniteBench_endia_eval_cfg = dict( evaluator=dict(type=InfiniteBenchendiaEvaluator), pred_role='BOT' ) InfiniteBench_endia_datasets = [ dict( type=InfiniteBenchendiaDataset, abbr='InfiniteBench_endia', path='./data/InfiniteBench/longdialogue_qa_eng.jsonl', reader_cfg=InfiniteBench_endia_reader_cfg, infer_cfg=InfiniteBench_endia_infer_cfg, eval_cfg=InfiniteBench_endia_eval_cfg) ]