from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HellaswagDataset_V2 from opencompass.utils.text_postprocessors import first_option_postprocess hellaswag_reader_cfg = dict( input_columns=['ctx', 'A', 'B', 'C', 'D'], output_column='label', ) hellaswag_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt=('{ctx}\nQuestion: Which ending makes the most sense?\n' 'A. {A}\nB. {B}\nC. {C}\nD. {D}\n' "You may choose from 'A', 'B', 'C', 'D'.\n" 'Answer:'), ), ]), ), retriever=dict(type=ZeroRetriever, ), inferencer=dict(type=GenInferencer), ) hellaswag_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_role='BOT', pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'), ) hellaswag_datasets = [ dict( abbr='hellaswag', type=HellaswagDataset_V2, path='opencompass/hellaswag', reader_cfg=hellaswag_reader_cfg, infer_cfg=hellaswag_infer_cfg, eval_cfg=hellaswag_eval_cfg) ]